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Analysis of Time and Space Harmonics in

Symmetrical Multiphase Induction Motor Drives by

Means of Vector Space Decomposition

Jano Malvar Álvarez

(Abstract)

The use of multiphase motor drives, i.e., with a phase number higher than three,
is an increasingly important trend nowadays. The common procedure to analyze or to
design the control algorithm for multiphase motors is to use a decoupling transformation
method that transforms the model from the original phase-variable reference frame, where
the electrical variables are cross-coupled, into a model decoupled in orthogonal subspaces.
One such transformation is the vector space decomposition (VSD), in which each variable
is represented by a complex number called spatial vector. When the multiphase induction
motor model is decoupled by means of the VSD, different types of subspaces are obtained.
The main type of subspace is the one where there is coupling between the rotor and the
stator, i.e., where the electromechanical energy conversion happens. There are other types
of subspaces in which there is no coupling between the stator and the rotor; these planes
do not produce electromechanical energy conversion and their impedance can be very high
(in case of homopolar components with isolated neutral points) or low.

In multiphase machines, as happens in three-phase ones, some non-ideal characteris-
tics give rise to harmonics that can lead to undesirable effects such as torque ripple and
electrical losses. They can be produced by the converter deadtime, the pulse-width mod-
ulation (PWM), flux saturation, the non-perfectly sinusoidal distribution of the windings,
non-uniform airgap and some other non-linearities. The characterization of such harmon-
ics in the decoupled motor model and the estimation of the spatial vector of each harmonic
is interesting from the point of view of understanding the motor and control. One of the
main reasons for identifying the subspace where each current component maps and its
spatial vector rotation (SVR) speed is that it is necessary for setting up the controllers.
Knowing the subspace where some specific current components map and their SVR speed
is essential for sensorless speed measurement algorithms and machine current signature
analysis (MCSA). Moreover, the subspace where each current component maps and its
SVR speed predict if such a component is going to contribute to the overall motor torque,
produce torque ripple or generate losses. Therefore, from the standpoint of the motor
performance analysis, the characterization by using the VSD of the current harmonics is
also important.

Most of the previous works about multiphase drive harmonics are focused only on
machines with a specific number of phases, such as five-, six- and seven-phase motors
and they deal only with odd order harmonics, which are the most common low order
ones. Furthermore, some studies about series-connected multimotor drives have suggested



that the plane where some current harmonics map depends not only on the harmonic
frequency, but also on the phase arrangement in the stator windings connection. As
far as the author knows, there are no previous studies about how the phase connection
order changes affect the harmonic mapping or studies about how harmonics map in series-
connected multimotor drives.

Regarding the topic of spatial harmonics modeling, it has been extensively researched
in the three-phase machines field, from the thorough analyses focused on one specific spa-
tial harmonic origin to the more general studies that include the more common causes of
spatial harmonics, such as the healthy MCSA. Some spatial harmonic proposals in multi-
phase motors are directly adapted from three-phase cases and do not take into account the
different motor subspaces. Other multiphase spatial harmonic studies, although taking
into account the motor subspace decomposition, analyze only particular spatial harmonic
causes or are focused just on motors with a specific phase number. The particular case
of MCSA for machine status monitoring is also a broadly researched topic in the three-
phase field and most of the methods proposed for multiphase motors are based on the
adaptation of the three-phase ones, such as the classic MCSA approximation that cat-
egorizes the current harmonics according to their frequencies only. However, the study
of the motor current harmonics by means of the subspace and the SVR-speed provides
more degrees of freedom for classifying such current components than the methods based
only on the current harmonic amplitudes and frequencies. Furthermore, the additional
subspaces that a multiphase motor has in comparison with the three-phase counterpart
provides more levels of classification. Therefore, a MCSA method designed to take ad-
vantage of the additional classification variables and the extra subspaces obtains more
information about the harmonics origins and avoids some cases of symptoms overlapping
in the phase current spectrum. There are some previous works that use the analysis of
the currents in the decomposed model of the motor for specific fault detection, such as
open-phase or broken bar MCSA, but its application for the identification of faults such
as static, dynamic and mixed eccentricity is still to be done.

This thesis presents the study and characterization, by means of the VSD, of the stator
current and voltage components due to time and spatial harmonics in a 𝑛-phase motor
with a symmetrical arrangement of phases. First, an analysis of the stator voltage and
current harmonics in a multiphase induction motor, by means of the VSD, that includes
the effects of each time harmonic and the phase sequence is developed. As a result it
is proposed a very simple time harmonic mapping method valid to predict the subspace
where each time harmonic maps and its SVR speed (frequency and direction) in sym-
metrical multiphase induction motor drives of any phase number and in series-connected
multimotor drives. Then, equations to study the subspace mapping and SVR speed of the
current harmonics produced for some non-ideal characteristics of a squirrel cage motor
such as non-perfect sinusoidal winding distributions, rotor bars, airgap variations due to
the stator and rotor slots and magnetic saturation are obtained. These equations are used
to study the current signature of healthy multiphase induction motors by means of the
VSD. Finally, the model is extended for covering also the static and dynamic eccentricities
and, based on it, a VSD MCSA method to detect pure-static, pure-dynamic and mixed
eccentricity in multiphase induction motors is proposed.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The application of power electronics in electrical drive systems enables utilization of ac
machines with a phase number higher than three. Some of the advantages of multiphase
drives, when compared to the standard three-phase ones, are:

∙ The possibility to share the delivered power among more inverter legs, which reduces
the current stress of each power device.

∙ Reduced current harmonic content in the direct current (DC) link in case of VSI
fed drives.

∙ Higher reliability, since a multiphase machine can operate with an asymmetrical
winding structure in case of loss of one or more inverter legs or machine phases.

Modeling the multiphase drives in the phase-variable reference frame leads to cross-
coupled variables. To avoid the interdependence among variables some authors have
proposed different methods that decompose the 𝑛-dimensional space model into decoupled
orthogonal subspaces. These transformations simplify the multiphase drive model and
the task of designing the control algorithm. One of these transformations is the VSD,
in which each subspace current and voltage component is modeled as a complex number
called spatial vector.

In a similar way as it happens in three-phase drives, in multiphase ones some non-
linearities give rise to harmonics. Two main types of harmonics are going to be studied
in this work, time and spatial harmonics [41–43]. Time harmonics are the harmonic
components contained in the electrical signals (i.e., voltage and current waveforms). They
can be produced by the converter deadtime, the PWM, fault states or imbalances of the
converter feeding system. Spatial harmonics, on the other hand, are those in the magnetic
field that are produced by flux saturation, the non-perfectly sinusoidal distribution of the
windings or rotor eccentricity. These harmonics can generate undesirable effects such as
torque ripple and electrical losses.

The study based on the VSD of the variables gives more information of each current
and voltage component than the classical frequency analysis, i.e., the subspace where it
maps and the SVR speed, that includes the frequency and the direction of rotation. This

1
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analysis is useful for applications such as torque ripple prediction or cancellation, current
harmonic compensation, sensorless speed measurement and machine current signature
analysis. From the point of view of the drive performance the subspace where each com-
ponent maps is important because, in motors with distributed windings, the harmonics
that map into some specific subspaces generate electromechanical energy conversion, i.e.,
they can lead to torque ripple production; and in some subspaces the impedance is low,
giving rise to high amplitude current harmonics even if voltage components are moder-
ate. From the viewpoint of the current harmonics and torque ripple compensation, the
subspace and SVR speed of each time harmonic is important for setting the controllers.
In multiphase drives the common procedure to design the current controllers is to work
with a decoupled model, such as the VSD model, where the signals that each controller
governs are in one specific two-dimensional (2D) subspace. Therefore, for designing the
current harmonic controllers it is necessary to know into which subspace each harmonic
maps. Besides this, the current controllers to cancel each harmonic usually work in a
rotating reference frame that must be set to the SVR speed of such current component.

Even in a healthy multiphase induction machine, stator current harmonics appear
due to some non-ideal characteristics. The analysis of such harmonics, commonly called
healthy machine current signature, by means of the VSD, helps in applications such as
sensorless speed measurement and MCSA. For example, the identification of the subspace
where the principal slot harmonics (PSHs) map and their SVR speeds, depending on the
machine characteristics, helps in the designing process of sensorless speed measurement
algorithms based on the principal slot harmonic (PSH) frequencies. From the standpoint
of the MCSA methods, a good understanding of the healthy machine signature is necessary
to make a correct interpretation of its changes under fault conditions; e.g., the static
eccentricity detection systems by PSH monitoring used in three-phase motors need to
know the healthy machine PSHs in order to compare them with the ones in fault condition.

The main objective of this dissertation is to develop a characterization of time and
spatial harmonics in multiphase drives, conceived to be generic for any number of phases,
that identifies the subspaces affected by each harmonic and predicts its SVR speed, which
includes the frequency and the SVR direction. To accomplish this objective, the first step
is to develop a simple method to predict the subspace where each time harmonic maps
and its SVR speed in 𝑛-phase drives. The second step is to analyze the back EMF and
stator induced current components produced by the spatial harmonics due to the stator
and rotor current distributions, non-uniform airgap and magnetic saturation in 𝑛-phase
motors. Then, the next step is to extend the harmonic mapping method to cover, besides
the converter time harmonics, the induced stator currents due to the mentioned spatial
harmonics in order to obtain the VSD of the healthy motor current signature. Finally,
the last step is to develop a MCSA method for detecting pure static, dynamic and mixed
eccentricities based on the VSD of the current signature.
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1.2 Background and Review of Previous Research

1.2.1 The Symmetrical Multiphase Drive

Multiphase Drives

The terms multiphase motor drives and 𝑛-phase motor drives make reference to energy-
conversion systems that use electric motors with a stator winding with more than three
phases (𝑛 > 3) [4, 44–46]. The adoption of this technology in the industry has been
increased, supported by the use of power converters in variable speed alternating current
(AC) drives. The input stage of the drive has the same phase number of the main supply,
but its output stage can have any number of phases. Therefore, the converter decouples
the motor from the three-phase supply and allows to use machines with any number of
phases in the stator windings [47, 48].

Multiphase Motor Model

In a symmetrical 𝑛-phase machine the angle between any consecutive two stator phases
is 𝛼𝑐 = 2𝜋/𝑛 electrical degrees, called the Characteristic Angle, and each phase winding
can be assumed to be equal to the others. The universal theory of electric machines
(UTEM) is normally used to model this type of multiphase motors under the following
assumptions [41, 49]:

∙ The stator windings are distributed in such a manner that the MMF it creates can
be assumed to be sinusoidal. The rotor is also designed to produce a sinusoidal flux.
Therefore, only the fundamental component of MMF is taken into account.

∙ The rotor MMF can be regarded as equivalent to the one produced by a winding
with the same pole pairs and phases as the stator one. Thus, the effects of rotor bars
in case of squirrel-cage rotor or the winding function harmonics in case of wounded
rotor are neglected.

∙ The airgap is assumed to be uniform and its variations due to rotor eccentricities
or rotor and stator slots are neglected.

∙ The magnetizing characteristic of the ferromagnetic material is assumed to be linear.
Thus, the effects of magnetic saturation are not considered.

∙ The resistances and leakage inductances of the stator and rotor windings are re-
garded as constant. Their variations due to frequency or temperature changes are
ignored.

∙ Hysteresis, eddy currents and parasitic capacitances are also neglected.
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The equations that relate the stator voltage, currents and the flux linkage of a 𝑛-phase
machine in the original phase variable domain provided by the UTEM are

[𝑣s] = [𝑅s][𝑖s] +
𝑑

𝑑𝑡
[𝜓s]

(1.1)

[𝑣r] = [𝑅r][𝑖r] +
𝑑

𝑑𝑡
[𝜓r]

where

[𝑣s] = [𝑣s1, 𝑣
s

2, . . . , 𝑣
s

𝑛]𝑡 [𝑣r] = [𝑣r1, 𝑣
r

2, . . . , 𝑣
r

𝑛]𝑡 (1.2)

are the stator and rotor voltage column vectors, respectively;

[𝑖s] = [𝑖s1, 𝑖
s

2, . . . , 𝑖
s

𝑛]𝑡 [𝑖r] = [𝑖r1, 𝑖
r

2, . . . , 𝑖
r

𝑛]𝑡 (1.3)

are the stator and rotor current column vectors and

[𝜓s] = [𝜓s

1, 𝜓
s

2, . . . , 𝜓
s

𝑛]𝑡 [𝜓r] = [𝜓r

1, 𝜓
r

2, . . . , 𝜓
r

𝑛]𝑡 (1.4)

are the stator and rotor flux linkage column vectors. The stator and rotor resistance
matrices are diagonal 𝑛× 𝑛 matrices, [𝑅s] = diag(𝑅s) and [𝑅r] = diag(𝑅r).

According to the multiple-coupled circuit theory, the flux linkage vectors can be rewrit-
ten as [50]

[𝜓s] = [𝐿ss][𝑖s] + [𝐿sr][𝑖r] (1.5)

[𝜓r] = [𝐿rr][𝑖r] + [𝐿rs][𝑖s]

where [𝐿ss] and [𝐿rr] are the stator and rotor inductance matrices, respectively, and [𝐿sr]
and [𝐿rs] are the mutual stator-to-rotor and rotor-to-stator inductance matrices. Under
the previously presented assumptions, the stator and rotor inductance matrices contain
only constant coefficients and are 𝑛× 𝑛 matrices:

[𝐿ss] =

⎡⎢⎢⎢⎢⎢⎣
𝐿s

11 𝐿s

12 𝐿s

13 . . . 𝐿s

1𝑛

𝐿s

21 𝐿s

22 𝐿s

23 . . . 𝐿s

2𝑛
...

...
...

. . .
...

𝐿s

𝑛1 𝐿s

𝑛2 𝐿s

𝑛3 . . . 𝐿s

𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦ (1.6a)

[𝐿rr] =

⎡⎢⎢⎢⎢⎢⎣
𝐿r

11 𝐿r

12 𝐿r

13 . . . 𝐿r

1𝑛

𝐿r

21 𝐿r

22 𝐿r

23 . . . 𝐿r

2𝑛
...

...
...

. . .
...

𝐿r

𝑛1 𝐿r

𝑛2 𝐿r

𝑛3 . . . 𝐿r

𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦ . (1.6b)

Based on the assumption that all individual phase windings in the stator are identical
and the multiphase winding is symmetrical, phase self-inductances are equal, 𝐿s

11 = 𝐿s

22 =
. . . = 𝐿s

𝑛𝑛, and mutual inductances within the stator satisfy the condition 𝐿s

𝑖𝑗 = 𝐿s

𝑗𝑖,
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where 𝑖 ̸= 𝑗, 𝑖, 𝑗 = {1, 2, . . . , 𝑛}, [51]. Therefore, [𝐿ss] is at the same time symmetric and
circulant matrix, i.e., its rows can be obtained by circular permutation. To obtain the
(𝑗 + 1)th row from the 𝑗th row, all elements of the ℎth row are shifted one step to the
right and the last element of the 𝑘th row is copied in the first column of the (k + 1)th
row [52]. [𝐿rr] is a symmetric and circulant matrix, according to the assumption that the
rotor equivalent winding has all individual phases identical.

The stator-to-rotor [𝐿sr] and rotor-to-stator [𝐿rs] matrices have time-varying coeffi-
cients. This is caused by the fact that the relative position of the rotor windings regarding
the stator windings and vice versa depend on the rotor angle 𝜃r, which changes due to
the rotor rotation. Under the UTEM assumptions both flux densities, the one due to
the stator and the one due to the rotor, are sinusoidal and the stator-to-rotor mutual
inductance matrix is [53, 54]

[𝐿sr] = 𝑀 sr

⎡⎣ cos (𝑃𝜃r) cos (𝑃𝜃r−𝛼𝑐) cos (𝑃𝜃r−2𝛼𝑐) ... cos (𝑃𝜃r−(𝑛−1)𝛼𝑐)
cos (𝑃𝜃r+𝛼𝑐) cos (𝑃𝜃r) cos (𝑃𝜃r−𝛼𝑐) ... cos (𝑃𝜃r−(𝑛−2)𝛼𝑐)

...
...

...
...

...
cos (𝑃𝜃r+(𝑛−1)𝛼𝑐) cos (𝑃𝜃r+(𝑛−2)𝛼𝑐) cos (𝑃𝜃r+(𝑛−3)𝛼𝑐) ... cos (𝑃𝜃r)

⎤⎦ (1.7)

where, 𝑀 is the mutual linkage between one stator and one rotor aligned phases, 𝑃
are the pole pairs and 𝜃r is the rotor position angle. The rotor-to-stator is calculated
as [𝐿rs] = [𝐿sr]𝑡. The stator-to-rotor [𝐿sr] and rotor-to-stator [𝐿rs] matrices are also
symmetric and circulant.

The volt-ampere and torque equations of a 𝑛-phase machine can be written in matrix
notation as [41, 42, 51, 55]

[𝑣s] = [𝑅s][𝑖s] + [𝐿ss]
𝑑

𝑑𝑡
[𝑖s] +

𝑑

𝑑𝑡
[𝐿sr][𝑖r]

(1.8)

[𝑣r] = [𝑅r][𝑖r] + [𝐿rr]
𝑑

𝑑𝑡
[𝑖r] +

𝑑

𝑑𝑡
[𝐿rs][𝑖s]

and

𝑇e =
[︁
[𝑖s]𝑡 [𝑖r]𝑡

]︁ 𝑑

𝑑𝜃r

[︃
[𝐿ss] [𝐿sr]

[𝐿sr] [𝐿rr]

]︃[︃
[𝑖s]

[𝑖r]

]︃
. (1.9)

Vector Space Decomposition

The variables in the machine model in the original phase-variable reference frame
are cross-coupled. A variety of transformations has been proposed to avoid the coupling
of variables [41, 56–58]. Such transformations decompose the 𝑛-dimensional space into
orthogonal subspaces: several 2D subspaces (planes) and one or two one-dimensional (1D)
subspaces (homopolar axes).

One of the methods to decompose the phase variables is the Clarke’s decoupling trans-
formation [47, 48, 59]. This transformation converts a vector of per-phase instantaneous
real values (current or voltages) into 𝑛 real values. The information of each plane is con-
tained in sets of two consecutive rows of the matrix. The Clarke’s transformation matrix
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for a 𝑛-phase motor with 𝑛 being an even number in its power invariant form is [48]

[C] =

√︂
2

𝑛

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 cos (𝛼c) cos (2𝛼c) · · · cos (2𝛼c) cos (𝛼c)

0 sin (𝛼c) sin (2𝛼c) · · · sin (2𝛼c) sin (𝛼c)

1 cos (2𝛼c) cos (4𝛼c) · · · cos (4𝛼c) cos (2𝛼c)

0 sin (2𝛼c) sin (4𝛼c) · · · sin (4𝛼c) sin (2𝛼c)
...

...
...

. . .
...

...

1 cos (𝑛−2
2
𝛼c) cos (2𝑛−2

2
𝛼c) · · · cos (2𝑛−2

2
𝛼c) cos (𝑛−2

2
𝛼c)

0 sin (𝑛−2
2
𝛼c) sin (2𝑛−2

2
𝛼c) · · · sin (2𝑛−2

2
𝛼c) sin (𝑛−2

2
𝛼c)

1√
2

1√
2

1√
2

· · · 1√
2

1√
2

1√
2

− 1√
2

1√
2

· · · 1√
2

− 1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.10)

The last two rows of the matrix [C] define the ℎ+ and ℎ− homopolar components, re-
spectively. These two homopolar components appear in a motor with an even number of
phases. In case the motor has an odd number of phases, there is not ℎ− component and
the last row of the matrix [C] is omitted [48]. The equations that define the multiphase
motor model decomposed into subspaces by applying the Clarke’s decomposition (1.10)
to the phase variable model (1.8) are

𝛼1-𝛽1

{︃
𝑣s𝛼1

= 𝑅s

𝛼1
𝑖s𝛼1

+ 𝐿s

𝛼1

𝑑
𝑑𝑡
𝑖s𝛼1

+ 𝑑
𝑑𝑡
𝐿sr

𝛼1
𝑖r𝛼1

𝑣s𝛽1 = 𝑅s

𝛽1
𝑖s𝛽1 + 𝐿s

𝛽1
𝑑
𝑑𝑡
𝑖s𝛽1 + 𝑑

𝑑𝑡
𝐿sr

𝛽1
𝑖r𝛽1

𝛼2-𝛽2

{︃
𝑣s𝛼2

= 𝑅s

𝛼2
𝑖s𝛼2

+ 𝐿s

𝛼2

𝑑
𝑑𝑡
𝑖s𝛼2

+ 𝑑
𝑑𝑡
𝐿sr

𝛼2
𝑖r𝛼2

𝑣s𝛽2 = 𝑅s

𝛽2
𝑖s𝛽2 + 𝐿s

𝛽2
𝑑
𝑑𝑡
𝑖s𝛽2 + 𝑑

𝑑𝑡
𝐿sr

𝛽2
𝑖r𝛽2

(1.11)

...

𝛼𝑝𝑚-𝛽𝑝𝑚

{︃
𝑣s𝛼𝑝𝑚 = 𝑅s

𝛼𝑝𝑚
𝑖s𝛼𝑝𝑚 + 𝐿s

𝛼𝑝𝑚
𝑑
𝑑𝑡
𝑖s𝛼𝑝𝑚 + 𝑑

𝑑𝑡
𝐿sr

𝛼𝑝𝑚
𝑖r𝛼𝑝𝑚

𝑣s𝛽𝑝𝑚 = 𝑅s

𝛽𝑝𝑚
𝑖s𝛽𝑝𝑚 + 𝐿s

𝛽𝑝𝑚
𝑑
𝑑𝑡
𝑖s𝛽𝑝𝑚 + 𝑑

𝑑𝑡
𝐿sr

𝛽𝑝𝑚
𝑖r𝛽𝑝𝑚

where 𝑝𝑚 = ⌊𝑛
2
⌋, for the stator volt-ampere equations; and

𝛼1-𝛽1

{︃
𝑣r𝛼1

= 𝑅r

𝛼1
𝑖r𝛼1

+ 𝐿r

𝛼1

𝑑
𝑑𝑡
𝑖r𝛼1

+ 𝑑
𝑑𝑡
𝐿rs

𝛼1
𝑖s𝛼1

𝑣r𝛽1 = 𝑅r

𝛽1
𝑖r𝛽1 + 𝐿r

𝛽1
𝑑
𝑑𝑡
𝑖r𝛽1 + 𝑑

𝑑𝑡
𝐿rs

𝛽1
𝑖s𝛽1

𝛼2-𝛽2

{︃
𝑣r𝛼2

= 𝑅r

𝛼2
𝑖r𝛼2

+ 𝐿r

𝛼2

𝑑
𝑑𝑡
𝑖r𝛼2

+ 𝑑
𝑑𝑡
𝐿rs

𝛼2
𝑖s𝛼2

𝑣r𝛽2 = 𝑅r

𝛽2
𝑖r𝛽2 + 𝐿r

𝛽2
𝑑
𝑑𝑡
𝑖r𝛽2 + 𝑑

𝑑𝑡
𝐿rs

𝛽2
𝑖s𝛽2

(1.12)

...

𝛼𝑝𝑚-𝛽𝑝𝑚

{︃
𝑣r𝛼𝑝𝑚 = 𝑅r

𝛼𝑝𝑚
𝑖r𝛼𝑝𝑚 + 𝐿r

𝛼𝑝𝑚
𝑑
𝑑𝑡
𝑖r𝛼𝑝𝑚 + 𝑑

𝑑𝑡
𝐿rs

𝛼𝑝𝑚
𝑖s𝛼𝑝𝑚

𝑣r𝛽𝑝𝑚 = 𝑅r

𝛽𝑝𝑚
𝑖r𝛽𝑝𝑚 + 𝐿r

𝛽𝑝𝑚
𝑑
𝑑𝑡
𝑖r𝛽𝑝𝑚 + 𝑑

𝑑𝑡
𝐿rs

𝛽𝑝𝑚
𝑖s𝛽𝑝𝑚

for the rotor volt-ampere equations.
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Each subspace 𝑝 in the decoupled model, shown in (1.11) and (1.12), contains two
stator voltage components 𝑣s𝛼𝑝 and 𝑣s𝛽𝑝 , two rotor voltage components 𝑣r𝛼𝑝 and 𝑣r𝛽𝑝 , two
stator current components 𝑖s𝛼𝑝 and 𝑖

s

𝛽𝑝
, and two rotor current components , 𝑖r𝛼𝑝 and 𝑖

r

𝛽𝑝
.

Both variables in each of these pairs, e.g., 𝑣s𝛼𝑝 and 𝑣
s

𝛽𝑝
, are mutually perpendicular [49].

Therefore, by assuming one of the components as the real part and the other component
as the imaginary part, each voltage or current variable in a plane can be defined as a
complex number. Such complex variables are known as space vectors.

Another variable decoupling method, focused on obtaining the space vectors of the
motor variables in each subspace, is the symmetrical components or Fortescue’s transfor-
mation [41, 57, 60]. The symmetrical components VSD matrix is [41]

[T] =
1√
𝑛

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a0 a0 · · · a0

a0 a1 a2 · · · a1(𝑛−1)

a0 a2 a2·2 · · · a2(𝑛−1)

...
...

...
. . .

...

a0 a𝑝 a𝑝·2 · · · a𝑝(𝑛−1)

...
...

...
. . .

...

a0 a𝑛−1 a(𝑛−1)2 · · · a(𝑛−1)(𝑛−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.13)

where a = 𝑒𝚥̂·𝛼𝑐 and 𝑝 ∈ [0, 𝑛− 1].

In the symmetrical components matrix each row vector corresponds to a complex
subspace [41]. The first row of the matrix [T] gives the space vector of the components
that map into the positive homopolar axis ℎ+. If the number of phases 𝑛 is odd, rows
from 𝑝 = 1 to 𝑝 = (𝑛− 1)/2 give the space vectors that map to planes 𝛼𝑝-𝛽𝑝 in complex
form and rows from 𝑝 = (𝑛 + 1)/2 to 𝑝 = 𝑛 − 1 are the conjugated form of the complex
variables from 𝑝 = 1 to 𝑝 = (𝑛 − 1)/2. If the number of phases 𝑛 is even, rows from
𝑝 = 1 to 𝑝 = 𝑛/2− 1 map to planes 𝛼𝑝-𝛽𝑝 in complex form and the 𝑝 = 𝑛/2 row gives the
components that map into the negative homopolar component axis ℎ−. The rows from
𝑝 = 𝑛/2 + 1 to 𝑝 = 𝑛− 1 are the conjugated form of variables from 𝑝 = 1 to 𝑝 = 𝑛/2− 1.

The original input variables can be real, imaginary or complex [41]. If this trans-
formation receives per phase complex variables as input, it separates the space vectors
rotating with positive and negative directions in different subspaces. The positive ro-
tating space vectors are given by the first set of planes of the matrix and the negative
rotating space vectors are given by their conjugated rows [41]. If, on the other hand, the
symmetrical components matrix is used with a vector of real values as input, it combines
the information of the positive and negative sequences in each plane [41, 61]. Therefore,
the conjugated rows do not give any extra information about the subspaces and can be
deprecated [41, 61].

The symmetrical components matrix is unitary, [T]* = [T]−1, and consequently, if
[𝐴] is an 𝑛 × 𝑛 symmetrical and circulant matrix, it can be transformed into a diagonal
matrix [𝐴]𝑡 by using the transformation [𝐴]𝑡 = [T][𝐴][T]−1, [41, 52, 55]. The volt-ampere
and torque equations transformed by using the symmetrical components method can be
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written in matrix notation as [52, 55]

[T][𝑣s]⏟  ⏞  
[vs

𝛼𝛽 ]

= [T]𝑟𝑠[T]−1⏟  ⏞  
[Rs

𝛼𝛽 ]

[T][𝑖s]⏟  ⏞  
[is𝛼𝛽 ]

+ [T][𝐿ss][T]−1⏟  ⏞  
[Lss

𝛼𝛽 ]

𝑑

𝑑𝑡
[T][𝑖s]⏟  ⏞  
[is𝛼𝛽 ]

+
𝑑

𝑑𝑡
[T][𝐿sr][T]−1⏟  ⏞  

[Lsr

𝛼𝛽 ]

[T][𝑖r]⏟  ⏞  
[ir𝛼𝛽 ]

(1.14)

[T][𝑣r]⏟  ⏞  
[vr

𝛼𝛽 ]

= [T]𝑟𝑟[T]−1⏟  ⏞  
[Rr

𝛼𝛽 ]

[T][𝑖r]⏟  ⏞  
[ir𝛼𝛽 ]

+ [T][𝐿rr][T]−1⏟  ⏞  
[Lrr

𝛼𝛽 ]

𝑑

𝑑𝑡
[T][𝑖r]⏟  ⏞  
[ir𝛼𝛽 ]

+
𝑑

𝑑𝑡
[T][𝐿rs][T]−1⏟  ⏞  

[Lrs

𝛼𝛽 ]

[T][𝑖s]⏟  ⏞  
[is𝛼𝛽 ]

and

𝑇e =
[︁
[is𝛼𝛽]* [ir𝛼𝛽]*

]︁ 𝑑

𝑑𝜃r

[︃
[Lss

𝛼𝛽] [Lsr

𝛼𝛽]

[Lsr

𝛼𝛽] [Lrr

𝛼𝛽]

]︃[︃
[is𝛼𝛽]

[ir𝛼𝛽]

]︃
. (1.15)

As 𝑟𝑠, 𝑟𝑟, [𝐿ss], [𝐿rr], [𝐿sr] and [𝐿rs] are 𝑛× 𝑛 symmetrical and circulant matrices, [Rs

𝛼𝛽],
[Rr

𝛼𝛽], [Lss

𝛼𝛽], [Lrr

𝛼𝛽], [Lsr

𝛼𝛽] and [Lrs

𝛼𝛽] are diagonal 𝑛 × 𝑛 matrices and the machine model
equations in this reference frame are decoupled.

The stator voltage equations of multiphase motor model after the VSD are

vs

𝛼𝛽]0 = Rs

𝛼𝛽]0i
s

𝛼𝛽]0 + Lss

𝛼𝛽]0
𝑑

𝑑𝑡
is𝛼𝛽]0 +

𝑑

𝑑𝑡
Lsr

𝛼𝛽]0i
r

𝛼𝛽]0 (1.16)

vs

𝛼𝛽]1 = Rs

𝛼𝛽]1i
s

𝛼𝛽]1 + Lss

𝛼𝛽]1
𝑑

𝑑𝑡
is𝛼𝛽]1 +

𝑑

𝑑𝑡
Lsr

𝛼𝛽]1i
r

𝛼𝛽]1

· · ·

vs

𝛼𝛽]𝑝 = Rs

𝛼𝛽]𝑝i
s

𝛼𝛽]𝑝 + Lss

𝛼𝛽]𝑝
𝑑

𝑑𝑡
is𝛼𝛽]𝑝 +

𝑑

𝑑𝑡
Lsr

𝛼𝛽]𝑝i
r

𝛼𝛽]𝑝

· · ·

vs

𝛼𝛽]𝑛 = Rs

𝛼𝛽]𝑛i
s

𝛼𝛽]𝑛 + Lss

𝛼𝛽]𝑛
𝑑

𝑑𝑡
is𝛼𝛽]𝑛 +

𝑑

𝑑𝑡
Lsr

𝛼𝛽]𝑛i
r

𝛼𝛽]𝑛

and the rotor voltage equations are

vr

𝛼𝛽]0 = Rr

𝛼𝛽]0i
r

𝛼𝛽]0 + Lrr

𝛼𝛽]0
𝑑

𝑑𝑡
ir𝛼𝛽]0 +

𝑑

𝑑𝑡
Lrs

𝛼𝛽]0i
s

𝛼𝛽]0 (1.17)

vr

𝛼𝛽]1 = Rr

𝛼𝛽]1i
r

𝛼𝛽]1 + Lrr

𝛼𝛽]1
𝑑

𝑑𝑡
ir𝛼𝛽]1 +

𝑑

𝑑𝑡
Lrs

𝛼𝛽]1i
s

𝛼𝛽]1

· · ·

vr

𝛼𝛽]𝑝 = Rr

𝛼𝛽]𝑝i
r

𝛼𝛽]𝑝 + Lrr

𝛼𝛽]𝑝
𝑑

𝑑𝑡
ir𝛼𝛽]𝑝 +

𝑑

𝑑𝑡
Lrs

𝛼𝛽]𝑝i
s

𝛼𝛽]𝑝

· · ·

vr

𝛼𝛽]𝑛 = Rr

𝛼𝛽]𝑛i
r

𝛼𝛽]𝑛 + Lrr

𝛼𝛽]𝑛
𝑑

𝑑𝑡
ir𝛼𝛽]𝑛 +

𝑑

𝑑𝑡
Lrs

𝛼𝛽]𝑛i
s

𝛼𝛽]𝑛
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Figure 1.1: Equivalent circuit for the 𝛼𝑝-𝛽𝑝 subspace of the decoupled multiphase motor
model.

where, for a vector [𝑋], the notation 𝑋]𝑘 makes reference to its 𝑘th element and, for a
matrix [𝑌 ], 𝑌 ]𝑘 makes reference to the element in the 𝑘th column and 𝑘th row. Therefore,
each subspace 𝑝 can be modeled as an independent circuit with the scheme shown in
Fig. 1.1 [41].

Sinusoidal Flux Density in Multiphase Induction Motors

The basic needed assumption for UTEM to be valid is that the magnetic flux in the
airgap produced by each phase of the stator and rotor windings is sinusoidal, i.e., the
flux is sinusoidally distributed in space [41, 52]. As a consequence of this hypothesis, the
rotor-stator mutual inductances are sinusoidal functions of the machine angle and the
transformed mutual inductance matrix becomes [41]

[Lsr

𝛼𝛽] = [T][𝐿rs][T]−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0

0 𝐿𝑠𝑟𝛼 + 𝚥̂𝐿𝑠𝑟𝛽 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 𝐿𝑠𝑟𝛼 − 𝚥̂𝐿𝑠𝑟𝛽

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (1.18)

Hence, under the flux sinusoidal condition, some of the transformed mutual inductances
become 0, as it can be seen in (1.18), and the resulting mutual inductance matrix [Lsr

𝛼𝛽]
is significantly simplified. Therefore, in the decoupled model shown in (1.14) the stator-
to-rotor and rotor-to-stator coupling inductances of some subspaces are 0, so in such
subspaces there is no coupling between the stator and the rotor. Hence, in this type of
subspace, the equivalent circuit shown in Fig. 1.1 is simplified. To distinguish them from
the subspaces where there is coupling between the stator and the rotor, the former are
called 𝑥-𝑦 planes. Such subspaces do not contribute to the torque production and have a
lower impedance than the 𝛼-𝛽 subspace [41, 48]. Thus, by using the UTEM simplification,
the multiphase motor model is decomposed into three different types of subspaces: 𝛼-𝛽,
𝑥-𝑦 and homopolar axes [48, 62].

Following this simplification, the volt-ampere equations particularized for a multiphase
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induction motor with short-circuited rotor become

vs

ℎ+ = Rs

ℎ+i
s

ℎ+ + 𝐿ls
𝑑

𝑑𝑡
isℎ+ (1.19)

vs

𝛼𝛽 = Rs

𝛼𝛽i
s

𝛼𝛽 + Lss

𝛼𝛽

𝑑

𝑑𝑡
is𝛼𝛽 +

𝑑

𝑑𝑡
Lsr

𝛼𝛽i
r

𝛼𝛽

vs

𝑥𝑦1 = Rs

𝑥𝑦1i
s

𝑥𝑦1 + 𝐿ls
𝑑

𝑑𝑡
is𝑥𝑦1

· · · ,

where 𝐿ls is the stator leakage inductance, for the stator, and

0 = Rr

𝛼𝛽i
r

𝛼𝛽 + Lrr

𝛼𝛽

𝑑

𝑑𝑡
ir𝛼𝛽 +

𝑑

𝑑𝑡
Lrs

𝛼𝛽i
s

𝛼𝛽 (1.20)

for the rotor. The equivalent circuit of each type of subspace for steady-state operation is
shown in Fig. 1.2 [62, 63]. If the motor model is decoupled by using the [T] matrix VSD,
the row 𝑝 = 0 belongs to the ℎ+ homopolar axis. If there is neutral connection between
the motor and the converter, the equivalent circuit of this subspace is the one shown in
Fig. 1.2.c. The row 𝑝 = 1 corresponds to the 𝛼-𝛽 plane of the motor. This subspace is the
one where the electromechanical energy conversion takes place and its equivalent circuit
in steady state is shown in Fig. 1.2.a. If the motor has an odd number of phases, the rows
from 𝑝 = 2 to 𝑝 = (𝑛−1)/2 and from 𝑝 = (𝑛+1)/2 to 𝑝 = 𝑛−1 correspond to 𝑥-𝑦 planes;
the equivalent circuit is shown in Fig. 1.2.b. If the number of phases of the motor 𝑛 is
even, the rows from 𝑝 = 2 to 𝑝 = 𝑛/2 − 1 and from 𝑝 = 𝑛/2 + 1 to 𝑝 = 𝑛− 1 correspond
to 𝑥-𝑦 planes, and the 𝑝 = 𝑛/2 row is associated to the ℎ− axis and its equivalent circuit
is shown in Fig. 1.2.c.

Multiphase Induction Motor Control

The model of the multiphase induction motor with short-circuited rotor, which is
shown in Fig. 1.2 and described by (1.19) and (1.20), only produces torque with the current
components in the 𝛼-𝛽 plane. The equivalent circuit of such plane in the multiphase
induction motor, when analyzed by means of the VSD, is analogous to the one in its three-
phase counterpart [48, 64]. Therefore, under the assumption of sinusoidal flux density
in the airgap, the control of the torque, speed and position of a multiphase induction
motor can be derived from the ones known for three-phase induction motors [48]. Control
algorithms for 𝑛-phase induction motors obtained from the three-phase field oriented
control (FOC) and direct torque control systems are described in [48].

The block diagram of an indirect FOC for a 𝑛-phase induction motor is shown in
Fig. 1.3, where 𝜑𝑟 represents the rotor flux angle [65]. The control scheme is practically
equal to the three-phase one. The main difference is the transformation matrix used to
obtain the decoupled 2D subspaces at which each current controller is implemented.

In the multiphase motors, the current control can be also done in a non-rotational
frame (i.e., in the 𝛼-𝛽 or 𝑥-𝑦 instead of the 𝑑 − 𝑞 frame) by using any of the already
known AC current regulators, such as proportional-integral (PI) controllers in a rotating
reference frame [48], proportional-resonant (PR) controllers [4] or vector PI controllers
[23].
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(a) 𝛼-𝛽 subspace.

(b) 𝑥𝑝-𝑦𝑝 subspaces.

(c) Homopolar axes (if there is neutral connection).

Figure 1.2: Subspace equivalent circuit of a multiphase induction motor.

The 𝑥-𝑦 planes in multiphase induction motors with sinusoidal flux density have a lower
impedance than the 𝛼-𝛽 plane, as it can be seen in the model described by (1.19) and
(1.20) [48, 65]. The fundamental component of the current maps into the 𝛼-𝛽 subspace,
but due to some converter nonlinearities such as the deadtime, voltage harmonics that map
into some of the 𝑥-𝑦 planes of the induction motor arise [65]. These voltage harmonics,
even with low amplitudes, can produce current harmonics with a considerable amplitude
due to the low impedance of such subspace [53, 65]. This fact can lead to additional losses
in the motor. Owing to this problem, some authors have proposed control algorithms for
multiphase motors that cancel those harmonics that map into the 𝑥-𝑦 subspaces [4, 65, 66].

In the last few years, new controls have been proposed for multiphase motors, such
as the direct torque control and predictive controls [67–71]. Another field of research in
multiphase motors that has increased its importance in the last few years is the fault
tolerant motor control [68, 71–74].
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Figure 1.3: Indirect FOC control of a 𝑛-phase induction motor.

Series-Connected Multimotor Drives

As the previous section explains, the torque and flux of sinusoidally distributed multi-
phase machines can be controlled by using only two stator components. This means that,
in machines with a phase number greater than three there exist additional degrees of free-
dom. Instead of using them to enhance the torque production [75] or for fault tolerance
[76], in a multimotor drive system they may be also employed to independently control a
group of series-connected machines fed from a single current controlled VSI [54, 77–82].

In order to achieve such an independent control it is necessary to connect the stator
windings of the machines in series with an appropriate phase transposition, as it is shown
in Fig. 1.4 [54, 77–79, 81–83]. In this figure, 𝑙𝑡 represents the order of the phase trans-
position and 𝛿 = 𝑙𝑡2𝜋/𝑛 is the spatial angle in electrical degrees between two consecutive
phases. In the multiphase motor model proposed by the UTEM, the electromechanical
energy conversion occurs only in the 𝛼-𝛽 plane. With the phase transposition in the se-
ries connection between motors, the current components that go to the electromechanical
conversion related plane in one machine go to other than the electromechanical conversion
plane in the other machines [54, 77–79, 81–83]. Examples of the phase transposition in
the series connection, in the specific cases of a 5-5 and 6-6 multimotor drive, are shown
in Fig. 1.5 [5, 80] and Fig. 1.6 [21, 78, 79], respectively.

To control the series-connected multimotor system, the reference for the converter
current control is the summation of the multiphase current set to control each machine
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Figure 1.4: Physical phase transposition in the series connection in a multimotor drive.
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Figure 1.5: Example of series connection of a 5-5 multimotor drive.

[78, 79, 82]:

[𝑖𝑠]* = [𝑖𝑠𝑀1
]* + [𝑖𝑠𝑀2

]* + ... = ̂︀𝑖1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin (𝜔𝑠,1𝑡)

sin (𝜔𝑠,1𝑡+ 2𝜋
𝑛

)

sin (𝜔𝑠,1𝑡+ 4𝜋
𝑛

)
...

sin (𝜔𝑠,1𝑡+ 𝜂 2𝜋
𝑛

)
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+̂︀𝑖2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin (𝜔𝑠,2𝑡)

sin (𝜔𝑠,2𝑡+ 4𝜋
𝑛

)

sin (𝜔𝑠,2𝑡+ 8𝜋
𝑛

)
...

sin (𝜔𝑠,2𝑡+ 𝜂 4𝜋
𝑛

)
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ . . . (1.21)

where the subindex 1 represents the control variables of 𝑀1, ̂︀𝑖1 and ̂︀𝑖2 are the current
amplitudes, 𝜔𝑠,1 and 𝜔𝑠,2 are the angular frequency and 𝜂 = 0, ..., (𝑛 − 1) represents the
phase index.

The multi-motor topologies more commonly studied for industrial applications are
the two-motor five-phase and six-phase drives [82]. It has been suggested that the two-
motor five-phase drive can be a good option in winder applications, when compared to the
standard solution with two three-phase motors supplied by two three-phase VSIs. Its three
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Figure 1.6: Example of series connection of a 6-6 multimotor drive.

main advantages over the three-phase counterpart are: a saving in the number of inverter
legs, easiness in implementing the vector control algorithm in a single microcontroller
and direct transmission of the braking energy between motors. Its main disadvantage is
an increase in the stator winding losses in each of the two machines, since flux/torque
producing currents of both machines pass through the stator windings of each one. The
specific case of the series-connected six-phase two-motor drive has been developed and
studied in [78–80], where the equivalence between a system of two series-connected six-
phase motors and a system with series-connected six- and three-phase motors is presented.
Because of the phase transposition in the series connection, only three phases in the second
six-phase machine are used, so it can be physically substituted in the system by a three-
phase machine. The main advantage of this multimotor topology, compared with other
series-connected two-motor drive configurations, is that the series-connection does not
produce any losses because of the circulation of the flux- and torque-producing currents
of the six-phase machine through the three-phase windings [78, 79]. In addition, if the
six-phase power rating is large compared to the three-phase one, the extra losses produced
by the circulation of the three-phase motor flux- and torque-producing currents through
the six-phase machine can be neglected [78]. The main disadvantage of the six-phase
two-motor drive configuration is that there is no reduction in the total number of inverter
legs compared to the system formed from two independent three-phase drives.

To achieve the independent control of the machines in a multi-motor drive, a sinu-
soidal spatial flux distribution in all the machine stators is needed and only sinusoidal
MMF distribution ensures that there is no coupling between the machines [80, 84]. Due
to nonlinearities, low order harmonics appear in the system. These harmonics produce
additional losses and parasitic torques in the series-connected system. Two main types of
harmonics are present in multiphase machines: time and spatial harmonics [41–43].

The effects of the spatial harmonics in a five- and a six-phase two-motor drive are
taken into account in [84]. Such paper studies the influence on the MI torque due to the
interactions between the winding function harmonics of MI and the fundamental current
of MII. The resulting rotating fields in MI due to [𝑖𝑠𝑀2

] in a five-phase two-motor drive are
shown in Table 1.1, where MMF+ and MMF- indicate that the interaction between the
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Table 1.1

𝑖II Interactions with the Spatial MI Motor Harmonics in a Five-Phase

Two-Motor Drive

MI spatial harmonic set [𝑖𝑠𝑀2
] effects in MI field

5𝑘 − 3 MMF+

5𝑘 − 2 MMF-

5𝑘 − 1 -

5𝑘 -

5𝑘 + 1 -

5𝑘 + 2 MMF+

5𝑘 + 3 MMF-

spatial harmonic set and the fundamental current of the second motor generates a positive
and negative rotating field in the airgap, respectively. In the second row, − indicates that
the interaction between the spatial harmonic set and the second motor current does not
produce a rotating field in the airgap. The direction in which a certain field component
rotates is considered as positive or negative depending on whether it coincides with that
of the fundamental or not. The conclusions of [84] have shown that the spatial harmonics
of MII produce crossed interactions in MI torque. However, the effects on the MII torque
due to the current of MI are not studied. In addition to this fact, a more general study
that covers the mapping of time harmonics in each motor in a series-connected multimotor
drive and that can be applied to all the known valid combinations of phase numbers and
series-connected motors (i.e., 5-5, 6-6, 7-7-7, 9-9-9-3, ...) is still to be done.

Time Harmonic Mapping

Time harmonics are the harmonic components contained in the electrical signals (i.e.,
voltage and current waveforms). They can be produced by deadtime [65, 85], the PWM
[63, 86, 87] or imbalances of the feeding system [88].

In the multiphase motor model decoupled by using the sinusoidal flux density assump-
tion, shown in Fig. 1.2, the time harmonics that are involved in the electromechanical
energy conversion are mapped in the first plane, commonly called 𝛼-𝛽 plane, while the
harmonics that are not can be found in the remaining planes, commonly called 𝑥-𝑦 planes,
or in the homopolar axes, commonly called ℎ+ and ℎ− axis [41, 48, 62, 89]. Therefore,
only the current harmonic components in the 𝛼-𝛽 can contribute to the torque production
or generate torque ripple. The equations that describe this model, (1.19) and (1.20), show
that the 𝑥-𝑦 plane impedance only includes the stator resistance and leakage inductance.
Hence, low voltage harmonics may lead to high current harmonics [47, 48, 56, 62]. The
impedance of the homopolar axes is usually very high or very low depending on whether
the neutrals are connected or not [48]. Consequently, the non-mechanical energy conver-
sion related harmonics should be controlled to reduce the extra losses in the machine [65].
In this manner, mapping each input voltage harmonic into the corresponding subspace
helps to identify which voltage harmonics will contribute to the air-gap flux (and, thus,
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to electromechanical conversion) and which ones will not.

Knowing the speed and direction of rotation of the vector space of each harmonic
is important for the current harmonic compensation, where the controller should be set
to the same frequency and sequence as the harmonic to be canceled. The SVR speed
identification of the current harmonics in all the planes is important as in the case of
concentrated winding machines, because in them, all the subspaces contribute to flux
and torque production [75, 90–92]. Depending on the speed and direction of rotation of
the vector space of each current harmonic, the torque produced by such harmonic can
contribute or drain the overall torque or produce torque ripple.

Most of the previous work about time harmonic mapping deals with machines with
a specific number of phases and with specific stator winding distributions. Multiphase
machines can be classified into two groups attending to their stator winding distribu-
tion, symmetrical and asymmetrical machines. In symmetrical multiphase machines, the
spatial displacement between any two consecutive stator phases is always the same and
equals 𝛼 = 2𝜋/𝑛. In asymmetrical multiphase machines, the stator phases are not placed
equidistantly along the circumference of the machine [47, 48]. The asymmetrical six-phase
machine was studied in [62] by considering a two independent plane model: one that in-
volves electromechanical energy conversion and another one that does not. The study
in [62] was extended in [53, 56, 93], which carried out the full harmonic plane mapping
for an asymmetrical six-phase machine including both homopolar axes as a third plane
that is orthogonal to the other two. A general equation to map the time harmonics for
asymmetrical machines is provided by [94].

In multiphase symmetrical machines, a remarkable contribution to the study of har-
monic mapping has been done in [43]. This paper provides a harmonic mapping equation
of the 𝛼-𝛽 plane for a generic 𝑛-phase symmetrical machine and for odd order harmonics.
Nevertheless, the planes not related to electromechanical conversion were not considered,
and equations for harmonic identification in the 𝑥-𝑦 planes and homopolar axes were not
provided. The harmonic plane mapping of five-phase induction machines was carried out
in [95, 96], obtaining the same results as in [43] for the 𝛼-𝛽 plane. For the 𝑥-𝑦 subspace
harmonic identification, each proposal has introduced a new equation for odd harmonics.
However, none of these two studies takes into account the homopolar axis harmonics. The
work in [95] has been extended in [47, 63, 87] with the full subspace mapping of odd har-
monics for five- and seven-phase machines. The full subspace mapping of a symmetrically
distributed six-phase machine is presented in [88], where both odd and even low-order
harmonics are taken into account. Most of the harmonic studies are focused just on odd
harmonics, which are the typical ones produced by nonlinearities such as PWM and dead-
time [65, 84, 97]. The presence of even harmonics is smaller, given that they usually have
lower amplitudes and are hence less important. The contribution of previous works to
the field of current harmonic mapping in multiphase induction motors is summarized in
Table 1.2.

As far as the author know, time harmonic mapping in the multimotor drives is an
under-researched topic and a study that identifies the mapping of the current harmonics
in each of the series-connected motors, despite its interest, is still to be done.
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Table 1.2

Previous Works About Harmonic Mapping in Multiphase Machines

Ref.
Machine

type

𝛼-𝛽

harm.

𝑥-𝑦

harm.

ℎ+

harm.

ℎ−

harm.

Even

harm.

[62]

dual

3-phase

asym.

yes yes no no no

[53, 56, 93]
6-phase

asym.
yes yes yes yes no

[94]
𝑛-phase

asym.
yes yes yes yes no

[43]
𝑛-phase

symm.
yes no no - no

[95, 96] 5-phase yes yes no - no

[47, 63, 87]

5-phase

and

7-phase

yes yes yes - no

1.2.2 Non-Sinusoidal Flux Density in Multiphase Induction Mo-

tors

In the real multiphase machines two main types of harmonics are present: the time har-
monics, already introduced, and the spatial harmonics. The spatial harmonics are those
that cause the flux density to be non-sinusoidal, even if the motor is fed with a sinusoidal
current. They are produced by flux saturation, non-perfectly sinusoidal distribution of
the windings and non-uniform airgap [41–43, 52].

To define the [𝐿𝑠𝑠], [𝐿𝑠𝑟] and [𝐿𝑟𝑟] matrices, the UTEM makes the assumption that the
flux is a sinusoidal function of space and does not take into account its spatial harmonics.
This model is capable of predicting the fundamental component of the current and the
average torque production around the rated operating conditions. However, a model based
on the winding distribution, on the machine geometry and on the magnetic permeance is
needed if the focus of study is condition monitoring, fault tolerance, rotor eccentricities
and performance analysis or an enhanced current control [61, 65, 98].

Winding Distribution Harmonics

The first required assumption in the model proposed in section §1.2.1 is that the stator
windings and the rotor conductors are distributed in the space in such a way that the
produced MMFs can be considered to be sinusoidal. However, in real motors, the winding
allocation in a finite number of slots produces MMF harmonics, as it can be seen in the
Fig. 1.7 example [99–101].
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Figure 1.7: Example of an stator winding distribution and the MMF, 𝐹 (𝜃), produced.

To study the winding distribution harmonics and calculate the produced MMF in the
airgap, two procedures are followed in the literature: one models the current allocation in
the space by using current sheets [41, 43, 102] and the other models the winding disposal
through the winding function [103–105]. Both methods are closely related.

The current sheet analysis (CSA) is explained in [41, 102]. It is characterized by
modeling the windings as a set of infinite thin blocks with the same current distribution
in the space. This current distribution is modeled through a function 𝐽(𝜃) that represents
the current density as a function of the spatial angle 𝜃. Giving a function 𝐾𝜂(𝜃) which
describes the winding distribution of the phase 𝜂 in the space, the current density of such
phase can be calculated as 𝐾𝜂(𝜃)𝑖𝜂(𝑡). The total current density function is obtained as
the summation of all the phases.

The winding function analysis (WFA) is explained in [103]. In this method, the dis-
tribution of each phase winding is modeled by a function 𝑛(𝜃) that describes de number
of turns at any specific angle 𝜃. The winding function of the phase 𝜂 is its turns function
without its average value (to eliminate the DC component) [103]: 𝑁𝜂(𝜃) = 𝑛𝜂(𝜃)− 𝑛𝜂(𝜃).
The MMF produced by the 𝜂 phase is calculated as the product of its winding function
and the current per phase [103].

Both the WFA and the CSA are based on the Ampere’s law, [41, 103]. This law,
assuming the permeability of iron to be infinite, can be expressed as [106, 107]∮︁

𝑐

𝐻⃗𝜂(𝜃, 𝑡)𝑑𝑙 =

∫︁
𝑠

𝐽𝜂(𝜃, 𝑡)𝑑𝑠⃗ (1.22)

where 𝑐 is a closed path, ⃗𝐻𝜂(𝜃, 𝑡) is the field intensity produced by the phase 𝜂, 𝑠 is the
surface enclosed by 𝑐 and 𝐽𝜂 is the current density produced by phase 𝜂 that crosses such

surface. The field intensity ⃗𝐻𝜂(𝜃, 𝑡) and the MMF ⃗𝐹𝜂(𝜃, 𝑡) are related by the equation
⃗𝐻𝜂(𝜃, 𝑡) = ⃗𝐹𝜂(𝜃, 𝑡)/𝑔, where 𝑔 is the airgap. The MMF produced by the phase 𝜂, 𝐹𝜂(𝜃, 𝑡),

is calculated by choosing the 𝑐 path to pass through two consecutive poles of the winding
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distribution [103, 107]:

𝐹𝜂(𝜃, 𝑡) =
1

2

∫︁ 𝜃+2𝜋/𝑃

𝜃

𝐽𝜂(𝜃, 𝑡)⏟  ⏞  
CSA

𝑑𝜃 = 𝑖𝜂(𝑡)
1

2

∫︁ 𝜃+2𝜋/𝑃

𝜃

𝐾𝜂(𝜃)𝑑𝜃 = 𝑁𝜂(𝜃)⏟  ⏞  
WFA

𝑖𝜂(𝑡) (1.23)

This equation shows the relationship between the CSA and WFA. It can be seen that
both approaches are equivalent and lead to the same results.

By using the current sheet procedure and under the assumption of uniform airgap and
negligible magnetic saturation, [41] extends the motor model provided by the UTEM to
include the stator and rotor distribution harmonics. Based on the rotational symmetry
that a healthy motor presents, [41] proposes a [𝐿𝑠𝑟(𝜈)] matrix that includes the effects
of the stator and rotor distribution harmonics in multiphase induction motors, its 𝑖-𝑗th
element is

𝐿𝑠𝑟(𝜈)]𝑖,𝑗 = ̂︀𝐿𝜈 [cos 𝜈(𝑃𝜃r − (𝑖− 𝑗)𝛼c)] (1.24)

𝑖 = {0, 1, 2, . . . , (𝑛− 1)} and 𝑗 = {0, 1, 2, . . . , (𝑛− 1)}

where 𝜈 is the winding distribution harmonic order, ̂︀𝐿𝜈 represents the average inductance
and is constant for each harmonic and 𝜃r is the rotor angle. The stator-to-rotor mutual
inductance matrix defined in (1.24) is symmetrical and circulant. Therefore, it can also
be decoupled by using the transformation process described in (1.19) and (1.20).

Squirrel Cage Rotor Bar Harmonics

The second assumption in the model proposed in section §1.2.1 is that the rotor MMF
can be approximated by the one produced by a wound rotor with the same pole pairs and
phases as the stator. To overcome this limitation and to model induction motors with a
different phase number in the stator and the rotor, [42, 52, 55, 58] have proposed models
for a 𝑛𝑠-𝑛𝑟 multiphase induction motors where 𝑛𝑠 is the stator phase number and 𝑛𝑟 is
the rotor phase number. Such models maintain the assumptions of negligible saturation
and uniform airgap and are also based on (1.8), but the stator voltage and current vectors
have 𝑛𝑠 elements and the length of rotor voltage and current vectors is 𝑛𝑟. The [𝐿𝑠𝑟(𝜈)]
proposed by [41] is extended by [55] to model the mutual inductance matrix in motors
where the stator 𝑛𝑠 and the rotor 𝑛𝑟 phase numbers are different, its 𝑖-𝑗th element is

𝐿𝑠𝑟(𝜈)]𝑖,𝑗 = ̂︀𝐿𝜈 [cos 𝜈(𝑃𝜃r − 𝑖𝛼𝑠 + 𝑗𝛼𝑟)] (1.25)

𝑖 = {0, 1, 2, . . . , (𝑛𝑠 − 1)} and 𝑗 = {0, 1, 2, . . . , (𝑛𝑟 − 1)}

where 𝛼𝑠 is the characteristic angle of the stator (𝛼𝑠 = 2𝜋/𝑛𝑠) and 𝛼𝑟 is the angle between
two consecutive phases of the rotor (𝛼𝑟 = 2𝜋/𝑛𝑟).

The 𝑛𝑠-𝑛𝑟 model presented by [52] uses the mutual inductance matrix described in
(1.25) to study the effects of the stator and rotor winding harmonics in a 𝑛𝑠-𝑛𝑟 induction
motor. It also proposes a transformation equivalent to the one shown in (1.19) and (1.20),
i.e., for decoupling the 𝑛𝑠-𝑛𝑟 induction motor taking into account spatial harmonics:

[𝑇 ] =

⎡⎢⎢⎣
[𝑇𝜈(𝜈 = 1)]

[𝑇𝜈(𝜈 = 3)]
...

⎤⎥⎥⎦ (1.26)
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where

[𝑇𝜈(𝜈)] =

√︂
𝑛ℎ
2

[︃
sin 𝜈(𝜔𝑟𝑡) sin 𝜈(𝜔𝑟𝑡− 2𝜋

𝑛ℎ
) . . . sin 𝜈(𝜔𝑟𝑡− (𝑛ℎ − 1) 2𝜋

𝑛ℎ
)

cos (𝜈𝜔𝑟𝑡) cos 𝜈(𝜔𝑟𝑡− 2𝜋
𝑛ℎ

) . . . cos 𝜈(𝜔𝑟𝑡− (𝑛ℎ − 1) 2𝜋
𝑛ℎ

]︃
, (1.27)

𝑛ℎ = max {𝑛𝑆, 𝑛𝑟} and 𝜈 represents the distribution harmonic order. By applying such
transformation, the 𝑛𝑠-𝑛𝑟 motor model is decomposed in (𝑛𝑠 − 1)/2, if 𝑛𝑠 is odd, or
𝑛𝑠/2− 1, if 𝑛 is even, equivalent circuits in the stator side and (𝑛𝑟− 1)/2 or 𝑛𝑟/2− 1 ones
in the rotor side.

This decomposed model is also used in [42]. Hence, such proposal is also based on
the uniform airgap and negligible saturation assumptions. In this paper the distribution
harmonics are grouped in sets. Each set includes the distribution harmonics that produce
flux linkage in the same equivalent circuit of the decoupled model. The stator distribution
harmonics that can affect, if present, each stator equivalent circuit are [42]

𝜈𝑖 = 𝐾1𝑛𝑠 + 𝑖 𝐾1 = 0,±1,±2, ... (1.28)

where 𝑖 = 1, ..., (𝑛𝑠 − 1)/2 is the decomposed stator equivalent circuit index. The rotor
distribution harmonics that affect each rotor equivalent circuit are [42]

𝜈𝑗 = 𝐾2
𝑛𝑟
𝑃

+ 𝑗 𝐾2 = 0,±1,±2, ... (1.29)

where 𝑗 = 1, ..., (𝑛𝑟 − 1)/2 is the decomposed rotor equivalent circuit index. Only the
spatial harmonics common to the stator and the rotor, i.e., 𝜈𝑖 = 𝜈𝑗, produce flux linkage
[42].

In the motor decomposed model proposed in [42], only specific combinations of stator
and rotor distribution harmonic sets produce flux linkage between the rotor and the
stator. Therefore, only such distribution harmonic combinations produce back EMF in
the particular stator subspace equivalent circuit. This property of the decomposed model
of a multiphase motor can be useful to identify the distribution harmonic that produces
a specific back EMF and induced current harmonic by studying the subspace where the
current harmonic maps. Hence, it is interesting to extend this motor model to cover other
spatial harmonics that are important for monitoring induction motors, such as the ones
produced by a non-uniform airgap or magnetic saturation.

MMF Harmonics Produced by Stator Current and Winding Distribution Har-

monics

The MMF in the airgap produced by the windings can be obtained by using the
current sheet approximation or the winding function method. The resulting MMF in
the airgap is a function of the current spatial distribution in the stator inner and rotor
outer surfaces. These current distributions depend on the winding allocation and the
instantaneous current that flows through each winding conductor. Therefore, the MMF
harmonic components in the airgap are not only produced by a non-sinusoidal winding
distribution; the stator current harmonics also affect them. The motor models proposed
by [41, 42, 52, 55, 108] include the effects of the stator and rotor distribution harmonics,
but they do not study the effects of the stator current harmonics over the motor MMF.
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Therefore, how the time harmonics in combination with the distribution harmonics affect
the motor flux is not analyzed in these works.

A study about the airgap MMF harmonics produced by a multiphase stator taking
into account time and distribution harmonics is carried out in [109] by using the winding
function procedure. In this paper, the effects of the interactions between time harmonics
and distribution harmonics is studied for three-, five-, six-, seven- and nine-phase induction
motors. Tables that relate the low order time and distribution harmonics (𝑞 = 1, ..., 15
and 𝜈 = 1, ..., 15) and give the resulting MMF in the airgap are provided under the
assumptions of negligible saturation, uniform airgap, symmetrical winding and integral
slots.

Furthermore, [43] presents a study of the MMF harmonics produced by the interaction
of time and stator distribution harmonics for induction motors with a general number
of phases 𝑛. In this paper, the field harmonics produced by a multiphase dual layer
and integral slot winding are analyzed and a function that relates the harmonic order
combinations that produce MMF in the airgap is provided. For any phase number of
the induction motor 𝑛, the 𝜈th distribution and 𝑞th time harmonic combinations that
satisfied

𝜈 = 𝑃 (𝑞 − 2𝐾𝑛) 𝐾 = 0,±1,±2, ... (1.30)

produce MMF [43]. The sign of 𝐾 denotes the rotating direction of the resulting field. If
𝐾 > 0 the produced MMF rotates in the same direction as the main flux, and vice versa.

Such equation is obtained by the CSA under the assumptions of negligible saturation,
uniform airgap and integral slot winding. The harmonic study in [43] is also focused in the
low order distribution harmonics. Under these simplifications, the even order distribution
harmonics can be omitted and this is reflected in (1.30), which only studies odd order
harmonics.

A time and spatial harmonic analysis of the 𝑛-phase induction motors that combines
the non-ideal characteristics analyzed by [41], [55] [42] and [43], but which also covers
different types of stator winding distributions such as fractional-slot windings and other
nonlinearities such as saturation and non-uniform airgap in multiphase motors, despite
its interest, has still not been developed.

Non-Uniform Airgap Modeling

All the previously presented works, [41–43, 52, 55, 103, 108, 109], analyze the flux
harmonics under the assumptions of negligible saturation and uniform airgap. Therefore,
these studies cover the stator and rotor winding distribution harmonics, but do not take
into account the non-uniform airgap harmonics, nor the magnetic saturation ones [110].

Under some conditions the uniform airgap assumption is not valid and the motor model
needs to be extended. Non uniform airgap can be produced by rotor eccentricities [111–
114], stator and rotor slots [115, 116] and other causes, such as salient poles [112, 117] and
rotor or stator mechanical deformations [118, 119]. Furthermore, in order to effectively use
the magnetic material, the majority of the motors are designed to work under moderate
saturation in normal operation [120, 121]. Hence, it would be also interesting to extend
the multiphase motor model that includes the effects of time and winding distribution
harmonics presented by [43] to cover the non-uniform airgap and magnetic saturation.
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stator

rotor

Figure 1.8: Geometric displacements associated with the eccentricity.

Under the uniform airgap and infinite magnetic permeability assumptions, the flux
density in the airgap is calculated as [41, 43, 109]

𝐵(𝜃, 𝑡) =
𝜇0

𝑔
𝐹 (𝜃, 𝑡) (1.31)

where 𝐵(𝜃, 𝑡) is the flux density in the airgap and 𝜇0 is the permeability of free space.
But, due to any of the mentioned mechanical conditions, the airgap can vary with the

spatial angle and time 𝑔(𝜃, 𝑡). Therefore, to include the non-uniform airgap in the flux
density calculation, (1.31) is rewritten as [113, 119]

𝐵(𝜃, 𝑡) =
𝜇0

𝑔(𝜃, 𝑡)
𝐹 (𝜃, 𝑡) = Λ(𝜃, 𝑡)𝐹 (𝜃, 𝑡) (1.32)

where Λ(𝜃, 𝑡) = 𝜇0/𝑔(𝜃, 𝑡) is the magnetic permeance function.
One of the possible causes of a non-uniform airgap is the rotor eccentricity [111, 113].

As it is represented in Fig. 1.8, it is produced by a displacement of the axis of rotation
of the rotor. Rotor eccentricities can be classified in three types: static, dynamic and
mixed eccentricity. In the static eccentricity, the rotor spinning axis 𝑂𝑐 and its symmetry
axis 𝑂𝑟 are the same but they do not coincide with the stator symmetry axis 𝑂𝑠. Thus,
the position of the minimum and maximum airgap in the space is constant. This type
of eccentricity can be produced by bearings misalignment, machine misaligned frame or
stator ovality [111, 112]. In the dynamic eccentricity, the rotor spinning axis 𝑂𝑐 coincides
with the stator symmetry axis 𝑂𝑠 but it is different form the rotor symmetry axis 𝑂𝑟.
Hence the position of the minimum and maximum airgap in the space rotates with the
rotor. This type of eccentricity can be produced by shaft deflection, shaft bent or a
misaligned load. The mixed eccentricity is a combination of the static and dynamic types
and so the rotation axis is different from both the stator and rotor symmetry axes. The
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Figure 1.9: Effects of the rotor and stator slots over the motor airgap.

airgap function that models the eccentricity is [111, 122]

𝑔(𝜃, 𝜃𝑟) = 𝑔(1 − 𝑎1 cos (𝜃)⏟  ⏞  
𝑠𝑡𝑎𝑡𝑖𝑐

− 𝑎2 cos (𝜃 − 𝜃𝑟)⏟  ⏞  
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

) (1.33)

where 𝑎1 = 𝑂𝑐𝑂𝑠/𝑔 is the static eccentricity severity, 𝑎2 = 𝑂𝑐𝑂𝑟/𝑔 is the dynamic ec-
centricity severity and 𝜃𝑟 is the angular position of the rotor with respect to the stator
reference.

In case of three-phase [110, 116] and dual three-phase motors [122], the rotor eccen-
tricity is modeled by using the magnetic permeance function Λ(𝜃, 𝑡) presented in (1.32).
In case of static eccentricity, this permeance function, expressed using harmonic decom-
position, is [116]

Λ𝑠𝑒 =
∞∑︁

ℎ𝑠𝑒=1

̂︀Λℎ𝑠𝑒 cos (ℎ𝑠𝑒𝜃) (1.34)

where ℎ𝑠𝑒 is the static eccentricity harmonic order and

̂︀Λℎ𝑠𝑒 =
𝜇0

𝑔

2(1 −
√︀

1 − 𝑎21)
ℎ𝑠𝑒

𝑎ℎ𝑠𝑒1

√︀
1 − 𝑎21

. (1.35)

The permeance function for a dynamic eccentricity of the rotor can be represented as
[116]

Λ𝑑𝑒 =
∞∑︁

ℎ𝑑𝑒=1

̂︀Λℎ𝑑𝑒 cos (ℎ𝑑𝑒(𝜃 − 𝜔𝑟𝑡)) (1.36)

where ℎ𝑑𝑒 is the dynamic eccentricity harmonic order, 𝜔𝑟 is the rotor angular speed and
[111, 116]

̂︀Λℎ𝑑𝑒 =
𝜇0

𝑔

2(1 −
√︀

1 − 𝑎22)
ℎ𝑑𝑒

𝑎ℎ𝑑𝑒2

√︀
1 − 𝑎22

. (1.37)

Another condition of the machine to include in the non-uniform airgap model is the
effect of the stator and rotor slotting. The produced variation over the motor airgap is
represented in Fig. 1.9.

The variation of the airgap due to the stator and rotor slots has been calculated in
the case of three-phase [110, 116] and dual three-phase motors [122]. In such cases, the
permeance function corresponding to the stator and rotor slotting, decomposed by using
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the Fourier series, is

Λ𝑠𝑙𝑡 = Λ𝑠 + Λ𝑟 + Λ𝑟𝑠

=
∞∑︁

ℎ𝑠=1

̂︀Λ𝑠 cos (ℎ𝑠𝑄𝑠𝜃) +
∞∑︁

ℎ𝑟=1

̂︀Λ𝑟 cos (ℎ𝑟𝑄𝑟(𝜃 − 𝜃r))

+
∞∑︁

ℎ𝑠=1

∞∑︁
ℎ𝑟=1

̂︀Λ𝑟𝑠[cos (ℎ𝑠𝑄𝑠𝜃 + ℎ𝑟𝑄𝑟(𝜃 − 𝜃r))

+ cos (ℎ𝑠𝑄𝑠𝜃 − ℎ𝑟𝑄𝑟(𝜃 − 𝜃r)] (1.38)

where Λ𝑠 is the permeance variation due to the stator slots, Λ𝑟 is the variation due to the
rotor slots and Λ𝑟𝑠 is due to the interaction between rotor and stator slots; ℎ𝑠 = 1, 2, ... is
the order of the stator slot harmonics, ℎ𝑟 = 1, 2, ... is the order of the rotor slot harmonics,
𝑄𝑟 is the rotor slots number, 𝑄𝑠 is the stator slots number,

̂︀Λ𝑠 =
2𝑛𝑠,𝑟
𝜋ℎ𝑠

sin (ℎ𝑠𝜋𝑛𝑠,Θ/𝑛𝑠,𝑎) (1.39)

̂︀Λ𝑟 =
2𝑛𝑟,𝑟
𝜋ℎ𝑠

sin (ℎ𝑠𝜋𝑛𝑟,Θ/𝑛𝑟,𝑎)

̂︀Λ𝑟𝑠 = ̂︀Λ𝑠
̂︀Λ𝑟 and 𝑛𝑠,𝑟, 𝑛𝑟,𝑟, 𝑛𝑠,𝑎 and 𝑛𝑟,𝑎 are the radial and angular dimensions of the stator

or rotor slots and 𝑛𝑠,Θ and 𝑛𝑟,Θ are the angles between two consecutive slots [119].
The summations in (1.38) can be simplified as [116]

Λ𝑠𝑙𝑡 =
∞∑︁

ℎ𝑠=0

∞∑︁
ℎ𝑟=0

1

2
̂︀Λ𝑟𝑠

(︁
cos (ℎ𝑠𝑄𝑠𝜃 + ℎ𝑟𝑄𝑟(𝜃 − 𝜃r))

+ cos (ℎ𝑠𝑄𝑠𝜃 − ℎ𝑟𝑄𝑟(𝜃 − 𝜃r))
)︁
. (1.40)

In the field of the multiphase motors the study of non-uniform airgaps is not as exten-
sive as in three-phase machines. The analysis of non-uniform airgap in [113] is not phase
specific and some of its findings can be extended for the multiphase machine case. In
case of slots and static and dynamic eccentricity modelling, [122] presents such study for
a specific dual three-phase induction motor. Therefore, developing a model for a generic
number of stator and rotor phases that includes the effects of the non-uniform airgap due
to slots and eccentricities is of interest. Furthermore, the already published three-phase
studies analyze the frequencies of the resulting back EMF or the induced stator current
harmonics due to the non-uniform airgaps. However, in 𝑛-phase motors an analysis of
the subspace where each of these harmonics maps can be helpful for designing the current
controllers if the objective is to cancel them. It also can be used, in case the objective
is to monitor those harmonics, to predict if the back EMF harmonics map into a low
impedance plane, producing high amplitude current harmonics, or into a homopolar axis,
where, in absence of neutral connection induced current harmonics do not circulate.

Modeling Saturation Harmonics

The multiphase motor model and permeance calculation expressions shown are based
on the assumption of infinite magnetic permeability. However, the normal magnetization
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Figure 1.10: Flux density𝐵 and magnetic permeability 𝜇 as a function of the field intensity
𝐻 in a ferromagnetic material.

curve or 𝐵-𝐻 curve of any ferromagnetic material, i.e., Fig. 1.10 , shows that the relation
between the flux density 𝐵 and the field intensity 𝐻 is not linear and the magnetic
permeability 𝜇 = 𝐵/𝐻 varies with the field intensity [123, 124]. It increases with the value
of 𝐻 until its maximum is reached; then, saturation occurs, the correlation is inverted
and its value decreases toward one.

In order to get an optimum utilization of the magnetic materials, induction machines
usually incorporate a certain degree of magnetic saturation at rated operating conditions.
As a consequence of this saturation, the magnetic field waveform changes and hence flux
harmonics are produced. There are two types of saturation effects depending the place
where saturation occurs: saturation of the teeth and saturation of the core. In case of
teeth saturation harmonics, their phases are such that tend to flatten the waveform of
the flux that caused the saturation, and in the case of core saturation, their phases tend
to produce a peaked waveform in the corresponding flux [97, 110, 120]. These harmonic
flux components travel in the airgap with the same angular speed as the corresponding
airgap flux component, always keeping the phase synchronism with it. In most machines
the teeth are more saturated than the core [120].

There are several different procedures to model the saturation harmonics in induction
machines. Most of the works are centered into modeling only the dominant third harmonic
component of the saturation flux, such as [110, 120, 125] that study the flux saturation
in a three-phase squirrel cage motor by modifying the airgap as a function of the flux
position and amplitude. Or, for example, the method proposed by [120], which is based on
directly modeling the flux density harmonic components and is focused only on modeling
the dominant third harmonic component. In [120], the flux density, including the effect
of the magnetic saturation of the teeth, is

𝐵𝑡(𝜃, 𝑡) = 𝐵𝑡
1(𝜃, 𝑡) +𝐵𝑡

3(𝜃, 𝑡) = ̂︀𝐵1 cos [𝜃 − 𝜎(𝑡)] + ̂︀𝐵3 cos 3[𝜃 − 𝜎(𝑡)]. (1.41)

where ̂︀𝐵1 is the fundamental flux density amplitude, 𝜎(𝑡) is the angular position of the
magnetic axis of the fundamental field.

However, the magnetic saturation of the teeth produces flux density harmonics of the
orders 𝜌 = 1, 3, 5, 7, 9, ... [116]. The total flux density modeled taking into account the
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Figure 1.11: Effects of the 1st, 3rd, 5th, 7th and 9th saturation harmonics on the total
flux density 𝐵𝑡 and resulting flux spectrum.

1st, 3rd, 5th, 7th and 9th saturation harmonics is depicted in Fig. 1.11. The methods
of modeling the flux saturation that cover more than the dominant third harmonic are
more complex, such as [116], which models the saturation by using the magnetic per-
meance function, or [118], where the saturation is modeled as an increase in the slot
opening. The permeance function to model flux saturation in three-phase motors, if only
the fundamental component of the field is saturated, is [116]

Λ𝜌 =
∞∑︁
𝜌=1

1

2
̂︀Λ𝜌 cos [2𝜌(𝑃𝜃 − 𝜔𝑠𝑡)]. (1.42)

In the field of the multiphase motors there are some works that study saturation in
motors with a specific number of phases, such as [97, 124] that analyze the flux satu-
ration in a five-phase squirrel cage motor by applying a correction factor to the mutual
inductances. The former, [97], is focused on the study of the effect of the saturation over
the fundamental component of the flux and does not analyzes the other flux harmonics
that the saturation produces. The latter, [124], studies the fundamental and the third
harmonic of the flux.

Motor Current Signature Analysis

All the previously mentioned nonlinearities, the distribution and time harmonics, non-
uniform airgap and magnetic saturation produce flux density harmonics in the machine
airgap. These flux harmonics produce back EMF harmonics [126, 127] that can affect the
machine behavior in two ways: producing torque harmonics [118, 128] or induced currents
that lead to additional losses [65, 88].
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The motor model in (1.1) shows that the stator voltage, stator current and flux linkage
are directly related. If the stator winding links flux due to the spatial harmonics, then
back EMF harmonics appear. If the motor is fed from a VSI, the stator voltage is fixed
by the converter. Therefore, the back EMF harmonics produce current components in the
stator that can be measured in order to make an indirect analysis of the flux harmonics
and the non-ideal motor characteristics that produce them.

MCSA is a diagnostic technique based on the stator current spectrum monitoring.
Machine problems can be detected by knowing the induced stator current harmonics
related to the healthy motor operation and the ones produced by motor defects [115, 116].
The main advantage of the MCSA is that it is an online non-invasive technique [114, 129–
131]. Another important advantage of the MCSA resides in the fact that it only needs to
sense the stator current. This makes the latter technique cost effective because, normally,
drives already include current sensors for the machine control [132]. This avoids the
necessity to introduce vibration, temperature or electromagnetic field sensors that other
monitoring techniques require [130]. Having a good knowledge and understanding of the
current signature of the machine under monitoring is an essential requisite to obtain a
good performance [115].

The main faults that can affect an induction motor can be classified as stator faults,
broken rotor bars or cracked rotor end-rings, static and dynamic eccentricities, rotor short
field windings and bearings and gearbox failures [130]. In three-phase motors the per-
centage of failure gathered in industrial surveys are 40% bearing and eccentricity related
failures, 38% stator related ones, 10% rotor related and 12% others [129, 130]. The early
detection of motor failures is important, because it will prevent the motor failure from
getting worse. For example, in the case of a motor eccentricity the early detection can
prevent vibration related problems, bearing damage due to the asymmetric forces and
even a rotor-to-stator rub that can produce a damage to the stator core and winding
[130, 133, 134]. In industrial applications, the fault detection methods are important,
because an unscheduled machine failure can cause production downtimes and economic
losses.

In the field of three-phase induction motors, the study of the motor currents to detect
faults is a broadly researched field. There exist works about broken bar detection since
the early 1980s. For example, in 1982, Williamson and Smith presented the model of a
three-phase squirrel cage motor under broken rotor bar faults [135] and, in 1988, Kliman
et al. [136] developed a method to detect broken rotor bars by monitoring the stator
current. There are also stator winding fault studies such as [137], published in 1985, and
eccentricity detection through the stator currents such as [116] in 1989. The effects of
the bearing damages into the stator current signatures were studied in the early 1990s
[138]. Nowadays MCSA in three-phase induction motors is still a prolific field of research.
A number of papers have been published recently on the topic. In 2013, MCSA papers
such as [115], which studies the healthy three-phase squirrel cage current signature; [139],
which identifies the backslash problem in the gearbox through MCSA; [140], which studies
open switch faults detection by MCSA and [141, 142], which propose different algorithms
for broken bar detection using MCSA, were published. From 2014, there are MCSA pub-
lished papers such as, [143], which uses a notch finite impulse response filter to detect
eccentricities in the current signature; [144], which recognizes outer cage defects in double
squirrel cage motors; [145, 146], which detect broken rotor bars and [147], which identi-
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fies stator winding faults. From 2015, there are papers such as [148], which proposes a
method to detect mechanical imbalances; [149], which presents gear tooth surface damage
detection using MCSA and [150–152], that propose advanced fault diagnosis techniques
for MCSA.

Most of the MCSA methods to detect the fault symptoms are based on the monitoring
of specific frequencies of the current spectrum [130]. The symptom frequencies for the
most common induction motor faults are [130]

∙ For bearing faults:
𝑓ℎ = |𝑓𝑠 ± 𝑘𝑏𝑟𝑓𝑣| (1.43)

where 𝑓𝑠 is the synchronous frequency, 𝑘𝑏𝑟 = 1, 2, 3, ... and 𝑓𝑣 is one of the charac-
teristic vibration frequencies.

∙ For broken rotor bar faults: detection can be done by monitoring the current har-
monics at

𝑓ℎ = (1 ± 2𝑠𝑘𝑏𝑘)𝑓𝑠 (1.44)

where 𝑘𝑏𝑘 = 1, 2, 3, ..., or the current harmonics at

𝑓ℎ = [𝑘(1 − 𝑠) ± 𝑠]𝑓𝑠 (1.45)

where 𝑘 = 1, 3, 5, ...

∙ For static or dynamic eccentricities:

𝑓ℎ =

[︂
(𝑘𝑟𝑄𝑟 ± ℎ𝑑𝑒)

1 − 𝑠

𝑃
± 1

]︂
𝑓𝑠 (1.46)

where 𝑘𝑟 = 1, 2, 3..., ℎ𝑑𝑒 = 0 in the case of static eccentricities and ℎ𝑑𝑒 = 1, 2, 3... in
the case of dynamic eccentricities.

∙ For mixed eccentricities (both static and dynamic):

𝑓ℎ = |ℎ𝑚𝑒
1 − 𝑠

𝑃
± 1|𝑓𝑠 (1.47)

where ℎ𝑚𝑒 = 1, 2, 3....

Detecting the machine faults by monitoring the current harmonics produced at spe-
cific frequencies has the disadvantage of symptom overlapping. It appears when some
symptoms of different nonlinearities emerge at the same frequency [153]. Besides, in the
last case, which defines the motor mixed eccentricity symptoms, it has been proved that,
in three phase motors, (1.47) is valid only when both static and dynamic eccentricities
exist together (mixed eccentricity) [130]. It also has been proved that (1.46) is valid to
detect pure-static and pure-dynamic eccentricities only if the machine has a specific com-
bination of pole pairs and rotor slot numbers [126, 130, 154], i.e., in three-phase motors
this technique is valid only if the 𝑃 and 𝑄𝑟 values are related by

𝑄𝑟 = 𝑃 [3𝑘 ± 𝑟] (1.48)
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where 𝑘 ∈ N and 𝑟 = 0 or 1. Therefore, some complementary methods were proposed
for the cases the standalone frequency analysis is not valid to detect only-static or only-
dynamic eccentricities in three-phase machines, such as zero sequence current analysis
[154] flux harmonics measurement [155], power signature analysis [153] or a method that
uses the amplitude of the negative sequence of the fundamental current and voltage as
static eccentricity fault symptom [156]. The last method, the one based on the measure-
ment of the negative sequence of the fundamental, can separate the effects of the static
eccentricity from the ones produced by an unbalanced load and it is independent from
the motor parameters [157].

In the multiphase motor field, to the author’s knowledge, the fault detection and
MCSA are not broadly studied. In [122], the eccentricity symptoms described by (1.46)
and (1.47) are used to detect static, dynamic and mixed eccentricity in the specific case
of a dual three-phase induction motor with isolated neutrals and 𝑄𝑟 = 28 and 𝑃 = 1.
A method to detect mixed eccentricity that uses the symptom depicted in (1.47) and
that involves the Park transformation of the current signal is presented in [158]. In such
paper, this method is claimed to be valid for multiphase motors, although it is only
tested for the three-phase case. A method to detect the symptoms of broken rotor bars
in multiphase motors with a general number of phases 𝑛 is proposed in [60]. In the field
of stator winding fault detection in multiphase motors there are several works, such as
[159–162], since one of the common uses of multiphase machines is in applications where
stator winding fault tolerance is required. As far as the author knows, an analysis of the
motor current signature and an eccentricity detection method for motors with a 𝑛 number
of phases is still to be done and is an interesting contribution to the MCSA field.
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1.3 Major results

The work in this dissertation is divided into the following major parts:

1.3.1 Chapter 2: “Stator Voltage and Current Mapping in a Si-

nusoidally Distributed Multiphase Motor ”

This chapter presents a simple graphical method for time harmonic mapping in sym-
metrical multiphase machines derived from the Symmetrical Components Theory [41].
This method provides a general (for any number of phases) solution for subspace and
sequence identification and extends the 𝑛-phase equation for the 𝛼-𝛽 time harmonics
identification given in [43] with full subspace and sequence detection and both odd and
even harmonic consideration. One of the contributions of the proposed method is that
it is valid to identify into which subspace and with which SVR direction is mapped each
harmonic in each machine in a series-connected multimotor drive. A set of experiments
is carried out to validate the proposed method using a five- and a six-phase single motor
drive and a series-connected six-phase two-motor drive.

1.3.2 Chapter 3: “Stator Voltage and Current Mapping in a Non-

Sinusoidally Distributed Multiphase Motor ”

This chapter presents an analysis of the back EMF and stator currents in 𝑛-phase
squirrel cage motors due to the non-ideal characteristics of the drive, such as the converter
time harmonics, stator and rotor windings distribution harmonics, non-uniform airgap and
magnetic saturation. This study is used to extend the analysis of the stator currents of
a 𝑛-phase motor presented in chapter §2 to cover the effects caused by these harmonics
and to obtain the VSD of the current signature of the healthy motor. The effects of the
static and dynamic rotor eccentricities over the motor current signature are assessed and
the detection of these faults in 𝑛-phase motors by means of MCSA is evaluated. Then
a MCSA method to detect static, dynamic and mixed eccentricities in 𝑛-phase squirrel
cage motors, based on the VSD of the motor current signature is proposed. Finally,
experimental results with two different five-phase squirrel cage motors are provided to
evaluate the predicted healthy motor current signature, analyzed by means of the VSD,
and the proposed eccentricity detection method.

1.3.3 Chapter 4: “Conclusions and Future Research”

The main conclusions of this dissertation are summarized in this chapter and some
recommendations for future research topics are provided.
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Time Harmonic Mapping in Multiphase

Induction Motors without Spatial

Harmonics

The method presented in this chapter has been published in the journal IEEE Transactions on
Industrial Electronics [5]. Its particularization for a series-connected six-phase two-motor drive has been
presented at the IEEE Industrial Electronics Society Conference 2012 (IECON’12) [21]. Its analysis of
the effects of the non-sinusoidal flux on a multimotor drive has been presented at the IEEE Industrial
Electronics Society Conference 2013 (IECON’13) [10].
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Abstract

The multiphase machines are usually modeled by a reference frame transformation to
avoid the cross-coupling of variables. This transformation decomposes the original n-
dimensional vector space into orthogonal subspaces. Mapping the voltage and current
harmonics into the subspaces in distributed machines is important because it allows to
identify which components are related to the torque and which ones just increase the
machine losses. The space vector identification and mapping of each harmonic is also im-
portant in closed-loop current harmonic compensation to set the controllers. In addition,
the harmonic mapping is interesting in multimotor systems to know how harmonics from
one machine can affect the other machines in the system. In this chapter a simple graph-
ical method for time harmonic subspace and SVR direction identification is proposed.
This method is valid for symmetrical machines of any phase number n, and it can be
used in multimotor systems. Experimental results using a five- and a six-phase motor in
single drive configuration and a series-connected two-motor six-phase drive validate the
proposed method. Finally, an experimental evaluation of the disturbances produced by
the spatial harmonics in a series-connected two-motor five-phase drive and their effects in
the developed method is performed.
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2.1 Introduction

Modeling the multiphase machine in the non-transformed phase-variable reference
frame leads to an 𝑛-dimensional vector space model. The control of this kind of machine
in such phase-variable reference frame is difficult because phase-variables are cross coupled
[53]. A variety of transformations has been proposed to avoid the coupling of variables
[41, 56, 59, 163]. Such transformations decompose the 𝑛-dimensional space into orthogonal
subspaces: several 2D subspaces (planes) and one or two 1D subspaces (homopolar axes).
Since there is no coupling among them, they lead to a significant simplification of the
machine model and control.

Two main types of harmonics are present in multiphase machines [41–43, 52]. Spa-
tial harmonics are those in the magnetic field due to flux saturation, the non-perfectly
sinusoidal distribution of the windings and non-uniform airgap. Time harmonics, on the
other hand, are the harmonic components contained in the electrical signals (i.e., voltage
and current waveforms).

Under the assumption of sinusoidally distributed stator and rotor windings, and ne-
glecting the effects of the magnetic saturation, the healthy motor does not have spatial
harmonics in the magnetic field. The time harmonics that are involved in the electrome-
chanical energy conversion are mapped in the first plane, commonly called 𝛼-𝛽 plane, while
the harmonics that are not can be found in the remaining planes, commonly called 𝑥-𝑦
planes, or in the homopolar axes, commonly called ℎ+ and ℎ− axis [41, 48, 62, 89]. Only
the current harmonic components in the 𝛼-𝛽 plane are coupled to the rotor and hence
only these components can produce torque ripple. In the decoupled equivalent circuit
model of the sinusoidally distributed multiphase machine [41], the 𝑥-𝑦 planes impedance
only includes the stator resistance and leakage inductance, so low voltage harmonics may
lead to high current harmonics [47, 48, 56, 62]. The impedance of the homopolar axes
is usually very high or very low depending on whether the neutrals are connected or not
[48]. Consequently the non-mechanical energy conversion related harmonics should be
controlled to reduce the extra losses in the machine [65]. In this manner, mapping each
input voltage harmonic into the corresponding subspace helps to identify which voltage
harmonics will contribute to the air-gap flux (and, thus, to electromechanical conversion)
and which ones will not. The SVR speed identification of each harmonic is important for
the compensation of the current harmonics, where each controller should be set to the
same frequency and SVR direction as the harmonic to be compensated [4].

As only one pair of current components is required for the flux and torque control in one
multiphase machine with sinusoidally distributed stator windings, additional degrees of
freedom can be utilized to independently control other machines within a multimotor drive
[77–79, 81–83]. In order to achieve such an independent control it is necessary to connect
the stator windings of the machines in series with an appropriate phase transposition.
With such phase transposition, the 𝛼-𝛽 plane of every machine becomes an 𝑥-𝑦 plane in
the remaining series-connected machines [77–79, 81–83]. Therefore, the mapping of the
time harmonics, e.g., the ones introduced by the converter deadtime, in series-connected
multimotor systems is useful to predict which harmonics affect each machine.

Most of the previous work about time harmonic mapping deals with machines with a
specific number of phases and with specific stator winding distributions.

In multiphase symmetrical machines, [43] provides an 𝛼-𝛽 plane current harmonic
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mapping equation for a generic 𝑛-phase symmetrical machine and for odd order harmonics.
Nevertheless, it does not study the harmonic mapping in the 𝑥-𝑦 planes and homopolar
axes. The harmonic plane mapping of five-phase induction machines was carried out in [95,
96], obtaining the same results as in [43] for the 𝛼-𝛽 plane. For the 𝑥-𝑦 subspace harmonic
identification, each paper has introduced a new equation which maps odd harmonics.
However, none of these two papers takes into account the homopolar axis harmonics.
The work in [95] has been extended for five- and seven-phase machines in [47, 63, 87].
These works include the mapping of the homopolar components. The subspace mapping
of a symmetrically distributed six-phase machine is done in [88]. Most of the harmonic
studies are focused just on odd harmonics, given that they are the typical ones produced by
nonlinearities such as PWM and dead times [65, 84, 97] and the even harmonic amplitudes
are smaller.

This chapter presents an analysis of time harmonic mapping in symmetrical multi-
phase machines derived from the Symmetrical Components Theory [41]. As a result of
this analysis, equations and a graphical method to determine to which subspace and with
which SVR direction maps each time harmonic is provided. The proposed mapping di-
agram can be also used in multimotor drives to identify which is the plane and SVR
direction into which each harmonic is mapped in each machine of the system. A set of
experiments is carried out to validate the proposed method using a five- and a six-phase
single motor drives and a series-connected six-phase two-motor drive. Finally, an addi-
tional experiment with a series-connected five-phase two-motor drive is carried out to
assess how the spatial harmonics produce crossed interactions between the motors and
how they affect the proposed method.

The chapter is divided into six sections. The second one presents the graphical method
for time harmonic mapping in symmetrical multiphase machines derived from the Sym-
metrical Components Theory. The third section highlights the differences between the
proposed method and the previous works. The fourth section extends the proposed map-
ping diagram to cover series-connected multimotor drives. The fifth section provides the
experimental evaluation of the identification method and, finally, the chapter ends with
the conclusions of the work.



36 CHAPTER 2. TIME HARMONIC MAPPING

2.2 Harmonic Mapping Diagram

2.2.1 Vector Space Decomposition and Mapping Diagram

In a symmetrical 𝑛-phase machine, the electrical displacement between any consec-
utive stator phases is called the characteristic angle 𝛼𝑐 = 2𝜋/𝑛 [48]. The symmetrical
components transformation uses the matrix shown in (1.13) to decompose the original
𝑛-dimensional vector space into several subspaces.,

Given that the input vector is considered to be real-valued, the conjugated rows do not
give any extra information about the subspaces [41], from here on these rows of matrix [T]
are not going to be taken into account. Therefore, the rows that are going to be studied
are 𝑝 ∈ [0, 𝑛/2] for even phase machines and 𝑝 ∈ [0, (𝑛− 1)/2] for odd phase machines:

𝑝 ={ 0⏟ ⏞ 
ℎ+

, 1, . . . , 𝑛/2 − 1⏟  ⏞  
𝛼𝑝-𝛽𝑝

, 𝑛/2⏟ ⏞ 
ℎ−

} if 𝑝 is even (2.1a)

𝑝 ={ 0⏟ ⏞ 
ℎ+

, 1, . . . , (𝑛− 1)/2⏟  ⏞  
𝛼𝑝-𝛽𝑝

} if 𝑝 is odd. (2.1b)

If only the fundamental voltage component is considered, then the 𝑛-phase voltage
input vector in the phase-variable reference frame, which excites the machine stator, is

[𝑉 ] = [𝑉0, 𝑉1, 𝑉2, . . . , 𝑉𝜂, . . . , 𝑉𝑛−1]
𝑡 (2.2)

where 𝑉𝜂 is the instantaneous voltage of phase 𝜂. Assuming that the amplitude is the
same in all phases, it can be written as

𝑉𝜂 = ̂︀𝑣𝜂 cos(𝜔𝑠 𝑡− 𝜑𝜂) (2.3)

where ̂︀𝑣𝜂 is the voltage amplitude, 𝜔𝑠 is the angular frequency, 𝑡 is the time variable and
𝜑𝜂 is the delay angle of phase 𝜂 with respect to phase 0. In the case of symmetrical
machines, a common assumption is that the delay angle between two consecutive phases
is equal to 𝛼𝑐 [41, 47, 48, 53, 56, 59]. In order to make the problem more general, in this
study the voltage delay angle between phases is assumed to be any multiple of 𝛼𝑐:

𝜑𝜂 = 𝑚 𝜂 𝛼𝑐 (2.4)

where𝑚 is an integer number that defines the temporal delay angle step between electrical
consecutive phases. This parameter is used to represent changes in the phase order of the
fundamental voltage that feeds the motor. In 𝑛-phase single motor drives, the delay angle
between consecutive phases usually equals the characteristic angle, i.e., 𝑚 = 1, but it can
be different (𝑚 ̸= 1) in standstill equivalent circuit parameter identification of multiphase
machines [163]. In series-connected multimotor drives the parameter 𝑚 is used to control
individual motors of the system [77–79, 81–83].

If the input voltage of phase 𝜂 is not sinusoidal, it can be decomposed by using Fourier
series as

𝑉𝜂 =
∑︁
𝑞

̂︀𝑣𝜂,𝑞 cos(𝑞(𝜔𝑠 𝑡−𝑚 𝜂 𝛼𝑐) + 𝜑𝑞) (2.5)
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where 𝑞 is the harmonic order, ̂︀𝑣𝜂,𝑞 is the voltage amplitude and 𝜑𝑞 is the delay angle
between the 𝑞th order harmonic and the fundamental component. In this expression,
each 𝑞th order harmonic is supposed to accomplish the same restrictions as in (2.3) and
(2.4): equal voltage amplitude for all the phases and angle delay between two consecutive
phases equal to a multiple of 𝛼𝑐. These assumptions are common in harmonic mapping
studies [41, 43, 48, 53, 56, 88] and quite approximately cover the most common cases in
multiphase motor drives. It is also assumed that sub-harmonics are absent.

If the cosine function is written in complex form as cos𝛼 = (𝑒𝚥̂ 𝛼 + 𝑒−𝚥̂ 𝛼)/2 then the
decomposition in (2.5) can be rewritten as

V𝜂 =
∑︁
𝑞

V𝜂,𝑞 =
∑︁
𝑞

̂︀𝑣𝜂,𝑞 𝑒𝚥̂(𝑞(𝜔𝑠 𝑡−𝑚 𝜂 𝛼𝑐)+𝜑𝑞) + 𝑒−𝚥̂(𝑞(𝜔𝑠 𝑡−𝑚 𝜂 𝛼𝑐)+𝜑𝑞)

2
. (2.6)

If the 𝑞th-harmonic of the input voltage vector V𝜂,𝑞 is transformed to the symmetri-
cal component reference frame, through matrix [T], then the 𝑞th harmonic component
mapped into each 𝛼𝑝-𝛽𝑝 subspace is obtained as

V𝑝,𝑞 =
̂︀𝑣𝜂,𝑞√
𝑛
·
𝑛−1∑︁
𝜂=0

[︂
𝑒𝚥̂(𝑞(𝜔𝑠 𝑡−𝑚 𝜂 𝛼𝑐)+𝜑𝑞) + 𝑒−𝚥̂(𝑞(𝜔𝑠 𝑡−𝑚 𝜂 𝛼𝑐)+𝜑𝑞)

2
𝑒𝚥̂ 𝑝𝜂𝛼𝑐

]︂
. (2.7)

The above equation can be rewritten as

V𝑝,𝑞 = A+
𝑝,𝑞 · 𝑒𝚥̂(𝑞𝜔𝑠𝑡+𝜑𝑞) + A−

𝑝,𝑞 · 𝑒𝚥̂(−𝑞𝜔𝑠𝑡−𝜑𝑞) (2.8)

where

A+
𝑝,𝑞 =

̂︀𝑣𝜂,𝑞
2
√
𝑛

𝑛−1∑︁
𝜂=0

𝑒𝚥̂(𝑝−𝑞 𝑚)𝜂 𝛼𝑐

⏟  ⏞  
a+
𝑝,𝑞

(2.9)

A−
𝑝,𝑞 =

̂︀𝑣𝜂,𝑞
2
√
𝑛

𝑛−1∑︁
𝜂=0

𝑒𝚥̂(𝑝+𝑞 𝑚)𝜂 𝛼𝑐

⏟  ⏞  
a−
𝑝,𝑞

(2.10)

are the amplitude of the positive and the negative SVR directions, respectively, of har-
monic 𝑞 in the 𝛼𝑝-𝛽𝑝 subspace. The coefficients a+

𝑝,𝑞 and a−
𝑝,𝑞 take the value 0 or 𝑛 de-

pending on 𝑝, 𝑞, 𝑚 and 𝛼𝑐. It is because, taking into account the Roots of Unity theory,
due to rotational symmetry, the summation

𝑛−1∑︁
𝜂=0

𝑒𝚥̂𝜂

𝜑𝑘⏞  ⏟  
𝑘(2𝜋/𝑛) with 𝑘 ∈ Z (2.11)

is equal to 𝑛 if the factor 𝜑𝑘 is an integer multiple of 2𝜋 and otherwise the summation
equals zero [164]. Fig. 2.1 shows examples of rotational symmetry representation of ele-
ments 𝑒𝚥̂𝜑𝑘 for 𝑛 = {1, 2, ..., 8}. In other words, the summation in (2.11) is equal to 𝑛 for
values of 𝑘 such that 𝑒𝚥̂𝜑𝑘 becomes a real positive number, and it is otherwise equal to
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Figure 2.1: Examples of rotational symmetry representation of elements 𝑒𝚥̂𝜑𝑘 of the sum-
mation in (2.11) for 𝑛 = {1, 2, ..., 8}.

zero. Consequently, a+
𝑝,𝑞 ̸= 0, and the 𝛼𝑝-𝛽𝑝 subspace has non-zero positive rotating space

vector for 𝑞 and 𝑚 combinations such that

𝑒𝚥̂(𝑝−𝑞 𝑚)𝛼𝑐 (2.12)

becomes a real positive number. Then, a−
𝑝,𝑞 ̸= 0, and hence the 𝛼𝑝-𝛽𝑝 subspace has non

zero negative rotating space vector for 𝑞 and 𝑚 combinations such that

𝑒𝚥̂(𝑝+𝑞 𝑚)𝛼𝑐 (2.13)

becomes a real positive number. If the combination of 𝑞 and 𝑚 implies that both a+
𝑝,𝑞

and a−
𝑝,𝑞 are non-zero simultaneously in the same subspace, then the combination of both

negative and positive rotating space vectors creates a pulsating voltage along the real axis
and such subspace can be represented as 1D one (homopolar axis).

The expressions in (2.12) and (2.13), which determine the value of a+
𝑝,𝑞 and a−

𝑝,𝑞, can
be split as a product of two complex numbers, one that depends on the spatial factor 𝑝
and another one that depends on the temporal factors 𝑞 and 𝑚:

𝑒𝚥̂(𝑝−𝑞 𝑚)𝛼𝑐 = 𝑒𝚥̂ 𝑝 𝛼𝑐 · 𝑒𝚥̂(−𝑞 𝑚)𝛼𝑐 (2.14a)

𝑒𝚥̂(𝑝+𝑞 𝑚)𝛼𝑐 = 𝑒𝚥̂ 𝑝 𝛼𝑐 · 𝑒𝚥̂ 𝑞 𝑚 𝛼𝑐 . (2.14b)

The product of two complex numbers is a real positive number if each factor is the
conjugated form of the other one. Therefore, the 𝛼𝑝-𝛽𝑝 subspace has non-zero positive
rotating space vector (a+

𝑝,𝑞 ̸= 0) for 𝑞 and 𝑚 combinations such that

𝑒𝚥̂ 𝑝 𝛼𝑐 = 𝑒𝚥̂ 𝑞 𝑚 𝛼𝑐 (2.15)

and 𝛼𝑝-𝛽𝑝 subspace has non-zero negative rotating space vector (a−
𝑝,𝑞 ̸= 0) for 𝑞 and 𝑚

combinations such that
𝑒𝚥̂(−𝑝)𝛼𝑐 = 𝑒𝚥̂ 𝑞 𝑚 𝛼𝑐 . (2.16)

Fig. 2.2 represents the left side of (2.15) and (2.16), in the complex plane, for even
and odd phase machines. The values of 𝑝 are limited to the range in (2.1). All the values
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of 𝑒𝚥̂ 𝑝 𝛼𝑐 corresponding to positive SVR directions lie on the positive imaginary zone of
the complex plane and all 𝑒𝚥̂(−𝑝)𝛼𝑐 values corresponding to negative SVR directions lie
on the negative imaginary zone. That is represented in Fig. 2.2 by two areas shaded in
different tones, one for the positive SVR directions and another one for the negative SVR
directions. Additionally, the conjugated values 𝑒𝚥̂ 𝑝 𝛼𝑐 and 𝑒𝚥̂(−𝑝)𝛼𝑐 that correspond to the
two possible SVR directions on 𝛼𝑝-𝛽𝑝 subspace lie over the same vertical line.

Fig. 2.3 shows the proposed graphical diagram, which is based on Fig. 2.2, for subspace
and SVR direction identification of the harmonic distribution considered in (2.5). This
diagram can be easily represented by an 𝑛-sided regular polygon, which is circumscribed
inside the unit circle, with one of its vertices on the real positive axis (reference vertex).
Each subspace is represented by a vertical line that passes through polygon vertices. The
lines that link two vertices (symmetrical with respect to the real axis) correspond to
2D subspaces, i.e., planes. On the other hand, lines that pass through a single vertex
correspond to 1D subspaces, i.e., homopolar axes. All vertices placed above the real
axis correspond to positive rotating space vectors, all vertices placed below the real axis
correspond to negative rotating space vectors and the one or two vertices placed on the
real axis correspond to the zero sequence harmonics.

The right side of (2.15) and (2.16) is used to identify which subspace and SVR direction
gets a specific harmonic 𝑞, which are graphically obtained by the position of the tip of
the 𝑒𝚥̂ 𝑞 𝑚 𝛼𝑐 vector in the diagram. The tip positions of vector 𝑒𝚥̂ 𝑞 𝑚 𝛼𝑐 are allocated on
the unit circle by an angle multiple of 𝛼𝑐. Since vertices of the 𝑛-sided regular polygon
are distributed at consecutive multiples of 𝛼𝑐, along the unit circle, the harmonic plane
mapping and their SVR direction can be obtained by numbering the vertices of the polygon
counterclockwise, starting from zero at the reference vertex and jumping in steps of 𝑚
vertices. Consequently, the steps to map the voltage harmonic distribution among planes
and SVR directions for an 𝑛-phase symmetrical motor in a simple graphical way are the
following:

1. Draw a horizontal line that represents the real axis. The area over this line represents
positive SVR direction area and the area under it represents negative SVR direction
area.

2. Draw an 𝑛-sided regular polygon with the center and one vertex on the real axis.
This vertex is the reference vertex.

3. Draw vertical lines crossing the vertices of the regular polygon that are symmetrical
with respect to the real axis and number them from the closest to the reference
vertex to the farthest. These lines represent the subspaces 𝛼𝑝-𝛽𝑝.

4. The subspace and SVR direction of a specific voltage harmonic 𝑞 is obtained by num-
bering the vertices of the regular polygon counterclockwise from zero to 𝑞 starting
at the reference vertex and jumping in steps of 𝑚 vertices.

2.2.2 Examples and Comparison with Previous Works

Fig. 2.4 shows the diagrams for five-, six- and seven-phase symmetrical machines
considering two delay angle steps: 𝑚 = 1 and 𝑚 = 2. These diagrams show the plane and
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Figure 2.2: Representation of 𝑒𝚥̂ 𝑝 𝛼𝑐 in the complex plane.

SVR direction mapping for harmonics from 𝑞 = 0 to 𝑞 = 14 in the five-phase case, from
𝑞 = 0 to 𝑞 = 17 in the six-phase case and from 𝑞 = 0 to 𝑞 = 20 in the seven-phase case.
For example, Fig. 2.4a shows that in the five-phase machine and with 𝑚 = 1, the 5th
and 10th harmonics map into the positive homopolar axis 𝛼0-𝛽0 ≡ ℎ+ as zero sequence,
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Figure 2.3: Subspace and SVR direction determination of the harmonic of order 𝑞 (ex-
ample with 𝑚 = 2).

the 1st, 6th and 11th harmonics map into the 𝛼1-𝛽1 plane and they have positive SVR
direction, the 2nd, 7th and 12th harmonics map into the 𝛼2-𝛽2 plane with positive SVR
direction, the 3rd, 8th and 13th harmonics map into the 𝛼2-𝛽2 plane with negative SVR
direction and the 4th, 9th and 14th harmonics map into the 𝛼1-𝛽1 plane with negative
SVR direction. In the case of 𝑚 = 2 (see Fig. 2.4a), the diagram is similar, but numbering
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Figure 2.4: Plane and SVR direction determination of the 𝑞 order harmonic in the 𝑚 = 1
and 𝑚 = 2 cases.
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the vertices by jumping in steps of two. Therefore, the 5th and 10th harmonics, as in the
previous case, map onto ℎ+ axis, the 3rd, 8th and 13th harmonics map into the 𝛼1-𝛽1
plane with positive SVR direction, the 1st, 6th and 11th harmonics map into the 𝛼2-𝛽2
plane with positive SVR direction, the 4th, 9th and 14th harmonics map into the 𝛼2-𝛽2
plane with negative SVR direction and the 2nd, 7th and 12th harmonics map into the
𝛼1-𝛽1 plane with negative SVR direction.

The results of the harmonic studies made in [47, 63, 89, 95, 96], for a five-phase machine
and odd harmonics, match with the results obtained in the specific five-phase diagram
in Fig. 2.4a, and the harmonic mapping in a symmetrical six-phase motor shown in [88]
matches with the six-phase diagram in Fig. 2.4b. In the seven-phase machine case, the
expressions in [47, 87] (for odd harmonics) also match with the results of the seven-phase
diagram, with 𝑚 = 1, in Fig. 2.4c. Concerning the equation in [43] for mapping of the
𝛼1-𝛽1 odd harmonics in symmetrical 𝑛-phase machines, it coincides with the diagram
presented here; it can be observed in the diagrams that for an 𝑛-phase machine with
𝑚 = 1 the harmonics 𝑞 = 𝑛𝑗 + 1 are allocated on the 𝛼1-𝛽1 plane with positive SVR
direction and the harmonics 𝑞 = 𝑛𝑗 − 1, with negative SVR direction.

Hence, the proposed graphical diagram extends the results obtained in previous works
about harmonic identification in symmetrical machines, by mapping odd and even har-
monics in an 𝑛-phase machine and providing extra information about their SVR direction
in a simple graphical way. Furthermore, (2.15) and (2.15) show that the plane and SVR
direction where one harmonic maps into is determined by the delay angle between two
consecutive phases. This delay angle depends on the time harmonic order 𝑞, the angle
delay step 𝑚 in the converter reference and the order followed to connect the phases of
the converter to the motor. Most of the previous works about time harmonic mapping in
multiphase motors study only the influence of the time harmonic order variable 𝑞. This
could lead to the misconception that the harmonic frequency and the plane and SVR
direction into where it maps are directly related. This is only valid in the case 𝑚 = 1 and
the phases of the converter and of the motor are connected in the same order, i.e., the
electrical angle between two consecutive phases is 𝛼c = 2𝜋/𝑛.
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2.3 Application of the Mapping Diagram to Multimo-

tor Drives

For each voltage and current component, the variable that determines to which plane
and with which SVR direction it is mapped into is the delay angle between two consecutive
phases. A good case to study this is the series-connected multimotor drives, because in
these systems the independent control of the motors is achieved by applying a physical
phase transposition in the series connection and injecting voltages with different angle
delay step 𝑚 between phases.

The proposed mapping diagram can be used in these multimotor drives for plane and
SVR direction mapping of each harmonic for every machine of the drive. The rules and the
required connection transposition between consecutive machines to achieve independent
motor control are described in [54, 77–79, 81–83]. The connection transposition effect
on each machine within the multimotor drive is characterized by the electrical angle 𝛼𝑠
between two machine phases that are connected to two consecutive converter phases. This
angle can be expressed as 𝛼𝑠 = 𝑙𝑡𝛼𝑐 where the factor 𝑙𝑡 represents the phase transposition
in the machine connection. As an example, Fig. 1.5 and Fig. 1.6 show the connection
diagrams for a multimotor drive with two five-phase machines and two six-phase machines,
respectively. Equations from (2.5) to (2.10), regarding the single machine drive, are still
valid for all the machines within the multimotor system if the characteristic angle 𝛼𝑐 is
replaced with the shifted characteristic angle 𝛼𝑠. Therefore, (2.15) and (2.16) turn into

𝑒𝚥̂ 𝑝 𝑙𝑡𝛼𝑐 = 𝑒𝚥̂ 𝑞 𝑚 𝛼𝑐 (2.17)

and
𝑒𝚥̂(−𝑝) 𝑙𝑡𝛼𝑐 = 𝑒𝚥̂ 𝑞 𝑚 𝛼𝑐 . (2.18)

Consequently, the complex vector that places the subspaces on the diagram becomes

𝑒𝚥̂ 𝑝 𝑙𝑡 𝛼𝑐 (2.19)

and
𝑒𝚥̂(−𝑝) 𝑙𝑡 𝛼𝑐 (2.20)

for positive and negative sequence, respectively. The phase transposition factor 𝑙𝑡 repre-
sents a physical change in the phase order and modifies the left side of (2.17) and (2.18).
Therefore, 𝑙𝑡 changes the position of the subspace in the diagram. The angle delay step 𝑚
represents a change in the phase sequence of the voltage reference and modifies the right
side of (2.17) and (2.18). Therefore, 𝑚 varies the harmonic distribution in the diagram.
For 𝑙𝑡 > 1 the position of the 𝛼𝑝-𝛽𝑝 subspace in the diagram changes and the conclusions
drawn from (2.15) and (2.16) are no longer valid, because not all vectors rotating in the
positive direction (𝑒𝚥̂ 𝑝 𝑙𝑡 𝛼𝑐) lie on the positive imaginary area of the complex plane and not
all the vectors rotating in the negative direction (𝑒𝚥̂ (−𝑝) 𝑙𝑡 𝛼𝑐) lie on the negative imaginary
zone of the complex plane. Consequently, for 𝑙𝑡 > 1 the sign of the imaginary zone where
the vector lies can be different from the sign of the SVR direction, which makes necessary
to indicate in the diagram the sign of the SVR direction in each particular case.

The harmonic mapping in the series-connected multimotor system is obtained in a
simple graphical way by representing the mapping diagram of every machine within the
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system, taking into account the 𝑙𝑡 value of each machine. The steps to draw the diagram
of every series-connected machine within the multimotor system are the same as in the
single machine case, but using (2.19) and (2.20) rather than (2.15) and (2.16) to place the
vertical lines that represent the subspaces. Consequently, the steps to map the voltage
harmonic distribution among planes and SVR directions for an 𝑛-phase symmetrical motor
should be adapted as follows by taking into account the value of 𝑙𝑡:

1. Draw a horizontal line that represents the real axis. The imaginary areas over and
below this line represent the two possible SVR directions for each plane.

2. Draw an 𝑛-sided regular polygon with the center and the reference vertex over the
real axis.

3. For each value of 𝑝 draw a vertical line, which represents the 𝛼𝑝-𝛽𝑝 subspace, through
the vertex corresponding to the tip of the vector 𝑒𝑗𝑙𝑡𝑝𝛼𝑐 . Add the sign of the imagi-
nary zone where such vertex lies to the name of the plane, in order to indicate the
sign of the SVR direction.

4. The subspace and SVR direction of a specific harmonic 𝑞 is obtained by numbering
the vertices of the regular polygon counterclockwise from zero to 𝑞 starting at the
reference vertex and jumping in steps of 𝑚 vertices, which represents the positions
of the tip of the vector 𝑒𝚥̂ 𝑞 𝑚 𝛼𝑐 . If the vertex corresponding to 𝑞 lies in the positive
imaginary zone then the sign of the SVR direction of harmonic 𝑞 is equal to the sign
indicated in the plane name, and if it lies on the negative imaginary zone then the
sign of such SVR direction is the opposite.

The most useful application of the delay angle step𝑚 is in series-connected multimotor
drives. It follows from (2.17) that, for a specific 𝑙𝑡, the fundamental voltage and current
(𝑞 = 1) map into the 𝛼1-𝛽1 plane when the delay angle step of the reference is𝑚 = 𝑙𝑡. This
fact points out that the machine that has a certain 𝑙𝑡 value can be controlled by selecting
𝑚 = 𝑠𝑡 in the source reference. Consequently, the mapping diagram obtained with certain
values of 𝑚 and 𝑙𝑡 shows how the harmonics of the voltage that controls the machine with
a phase transposition equal to 𝑚 affect the machine with a phase transposition equal to
𝑙𝑡 in the multimotor system.

As an example, the mapping diagrams for the two-motor drives in Fig. 1.5 and Fig. 1.6
are depicted in Fig. 2.5 and Fig. 2.6, respectively. Fig. 2.6, which corresponds to the six-
phase two-motor drive, shows the diagrams corresponding to the four combinations of the
phase transposition factors of both machines 𝑙𝑡 = 1 and 𝑙𝑡 = 2 with the two fundamental
angle delay steps 𝑚 = 1 and 𝑚 = 2 that allow to control each motor. The diagrams
corresponding to cases with 𝑙𝑡 = 2 show a smaller number of planes, because the tip of
the vector in (2.19) just points to three of the six vertices. Consequently, just a single
𝛼1-𝛽1 plane and a single homopolar ℎ+ axis are obtained, which is the case of a three-phase
machine. This is in agreement with the connection diagram in Fig. 1.6, which shows that
in a six-phase two-motor drive just three phases of MII machine are used, so it can be
substituted by a three-phase one [54, 77]. The reference voltage to control the MI machine
requires a fundamental component with 𝑚 = 1, which maps into the 𝛼1-𝛽1 plane of MI

with positive SVR direction. Such fundamental component maps to a vertex without any
related plane in the MII machine and it does not affect MII. The same applies to the sets
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of harmonics 𝑞 = {7, 13} and 𝑞 = {5, 11, 17} that produce torque ripple in MI machine but
they do not in MII. The harmonic sets 𝑞 = {2, 8, 14} and 𝑞 = {4, 10, 16}, which produce
losses in MI machine because they map into its 𝛼2-𝛽2 plane, map into the 𝛼1-𝛽1 plane of
MII with positive and negative SVR direction, respectively, producing torque disturbances
in MII. The harmonics 𝑞 = {3, 9, 15} which map onto the ℎ− axis of MI do not affect
MII machine. The harmonics 𝑞 = {0, 6, 12} map onto the ℎ+ axis of both machines. It is
important to remark that the usual odd harmonics of the voltage that controls MI do not
have any influence on MII and the unusual even harmonics are the ones that influence the
MII machine. The reference voltage to control the MII machine requires a fundamental
component with 𝑚 = 2. Such fundamental component and harmonics 𝑞 = {4, 7, 10, 13}
map into the 𝛼1-𝛽1 plane of the MII machine and into the 𝛼2-𝛽2 plane of MI with positive
SVR direction in both cases. The harmonics 𝑞 = {2, 5, 8, 11, 14} map into the 𝛼1-𝛽1 plane
of MII machine and into the 𝛼2-𝛽2 plane of MI with negative SVR direction in both cases.
The harmonics 𝑞 = {0, 3, 6, 9, 12} map onto the ℎ+ axis of both machines. In all cases,
the harmonics of the voltage to control the MII machine do not produce torque ripple in
MI machine and they can only produce extra losses in some cases.

Fig. 2.5, which corresponds to the five-phase two-motor drive, shows the diagrams
corresponding to the four combinations of the phase transposition factors of both machines
𝑙𝑡 = 1 and 𝑙𝑡 = 2 with the two angle delay steps 𝑚 = 1 and 𝑚 = 2, which allow to control
each one of them. The mapping diagram obtained with 𝑙𝑡 = 1 and 𝑚 = 1 shows how the
harmonics of the voltage that controls the MI machine torque affect itself. As expected,
the obtained results are the same as those obtained in the case 𝑚 = 1 of Fig. 2.4a. The
mapping diagram obtained with 𝑙𝑡 = 1 and 𝑚 = 2, which shows how the harmonics of the
voltage that controls the MII machine torque affect the MI machine, is identical to the
diagram obtained in the case 𝑚 = 2 of Fig. 2.4a, and consequently the same conclusions
are derived. That is, the fundamental voltage that controls MII and the harmonic sets
𝑞 = {6, 11} and 𝑞 = {4, 9, 14} map into the 𝛼2-𝛽2 plane of MI and thus they produce
extra losses in MI machine. The harmonic sets 𝑞 = {3, 8, 13} and 𝑞 = {2, 7, 12} map
into the 𝛼1-𝛽1 plane of MI with positive and negative SVR direction, respectively, so they
produce torque ripple in MI machine. Harmonics 𝑞 = {0, 5, 10} map onto the homopolar
ℎ+ axis and therefore, they do not affect to MI machine. The mapping diagram obtained
with 𝑙𝑡 = 2 and 𝑚 = 1 shows the effect of the harmonics of the voltage that controls the
MI machine in the MII machine. In this case, the fundamental voltage that controls the
MI and the harmonics 𝑞 = {6, 11} maps into the 𝛼2-𝛽2 plane of MI with negative SVR
direction, so they produces extra losses in MII machine. Harmonics 𝑞 = {4, 9, 14} map
into the same plane but with positive SVR direction and thus they produce extra losses in
MII as well. The harmonics sets 𝑞 = {2, 7, 12} and 𝑞 = {3, 8, 13} map into the 𝛼1-𝛽1 plane
with positive and negative SVR direction, respectively, and consequently they produce
torque disturbances in MII. The mapping diagram obtained with 𝑙𝑡 = 2 and 𝑚 = 2, which
shows how the harmonics of the voltage that controls MII machine affect this machine,
provides the same harmonic mapping as in the case of 𝑙𝑡 = 𝑚 = 1 regarding the effects in
the MI machine of harmonics of the voltage that controls this machine.
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Figure 2.5: Mapping diagram in a series-connected five-phase two-motor drive.
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Figure 2.7: Experimental setup.

2.4 Experimental Evaluation of the Harmonic Mapping

Diagram

The proposed diagram is validated by using a five- and a six-phase motor drives. The
experimental setup is shown in Fig. 2.7. Two three-phase VSI Semikron Semistack SKS
35F B6U+E1CIF+B6CI21V modules are used to build a six-phase VSI. The dc bus
voltage is 𝑉𝑑𝑐 = 300 V. In the five-phase experiments just five of the six legs of the VSI
are used. The converter control is implemented in a dSPACE DS1006 real-time rapid
prototyping platform based on an Advanced Micro Devices (AMD) Operton processor
with the DS5001 PWM board. The PWM is configured with a switching frequency equal
to 10 kHz. The voltages are measured between each phase of the machine and the medium
point of the dc bus, using LEM LV 25-P sensors through a low-pass filter with a cut-off
frequency of 3.0 kHz. The phase currents are measured by means of LEM LA 55-P sensors.
The analog-to-digital converter DS2004 board with 16 parallel channels is used to capture
all the measured signals. The fast Fourier transformation (FFT)s shown in this chapter
are obtained offline by using the Matlab ’fft’ function in the complex mode with measures
of 5120 samples and, thus, a resolution of 1.953 Hz.

Two different experiments have been done with single motor drive configuration. The
first one is to verify the subspace and SVR direction mapping of stator voltage and
current harmonics, and the second one is to verify the influence of 𝑚 on the plane and
SVR direction harmonic mapping. A five- and a six-phase motors are tested in each
experiment, respectively. An additional experiment with a six-phase two-motor drive
has been carried out to demonstrate that the presented graphical method can be used
in multimotor systems to determine the plane and the SVR direction mapping of every
harmonic in each machine. Finally, the effects of the spatial harmonic distortion in a series-
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connected five-phase two-motor drive and the voltage and current harmonic mapping in
such system are experimentally evaluated.
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Figure 2.8: Five-phase induction motor.

2.4.1 Five-Phase Single Motor Drive

In this experiment, the drive includes a symmetrical four-pole five-phase induction
machine, shown in Fig. 2.8. It was made by rewinding a 0.75 kW three-phase induction
motor with 30 stator slots, and it has five non-perfectly distributed star-connected wind-
ings. In the first experiment the motor is operated in open-loop mode without mechanical
load. The reference voltage to feed the machine has a 100 V root mean square (rms) fun-
damental component at 50 Hz and a fundamental step delay between phases 𝑚 = 1.
Harmonics up to 𝑞 = 12 are injected with an amplitude of 20% the fundamental voltage
amplitude. The voltage and current measurements are transformed through matrix [T]
into symmetrical components. The spectrum of each symmetrical component, obtained
by the complex fast Fourier transformation (CFFT), is depicted in Fig. 2.9. The CFFTs
show that the fundamental component and the 6th and 11th harmonics map into 𝛼1-𝛽1
plane with positive SVR direction, the 4th and 9th harmonics map into 𝛼1-𝛽1 plane with
negative SVR direction, the 2nd, 7th and 12th harmonics map into 𝛼2-𝛽2 plane with
positive SVR direction, the 3rd and 8th harmonics map into 𝛼2-𝛽2 plane with negative
SVR direction and the 5th and 10th harmonics of the machine voltage map onto the ℎ+

axis. There is no current harmonic component on the ℎ+ axis, because the neutral of the
motor is isolated. The harmonic subspace and SVR direction mapping obtained through
the experiments matches with the mapping predicted by the diagram in Fig. 2.4a for the
harmonics of a voltage with an angle delay step 𝑚 = 1 feeding a five-phase machine.

The objective of the second experiment is to check how a sinusoidal voltage component
of 50 Hz maps into different subspaces by only modifying its angle delay step 𝑚. In this
experiment the rotor is blocked and the torque is measured using the test bench. The
VSI is operated in open-loop mode and the voltage reference is set in order to obtain the
same per phase current in all the tests. Five tests are done by injecting only a sinusoidal
voltage component of 50 Hz with 𝑚 from one to five, to test the influence of 𝑚 on the
mapping.

Fig. 2.10 merges measurements obtained in the five experiments. Fig. 2.10a shows
the voltage references of phase A in each test to obtain phase current values around
1.5 A, Fig. 2.10b shows the phase A current waveform and Fig. 2.10c shows the torque
measurements. In the cases 𝑚 = 1 and 𝑚 = 4 a high amplitude voltage reference is
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Figure 2.9: Five-phase machine symmetrical components spectrum analysis.

required to obtain the current set point and the torque produced is also high, which shows
that with 𝑚 = 1 and 𝑚 = 4 the voltage and current 50 Hz component map into the 𝛼1-𝛽1
plane, which is responsible for the electromechanical energy conversion. With 𝑚 = 1 the
torque is positive and with 𝑚 = 4 it is negative; consequently, for 𝑚 = 1 and 𝑚 = 4, the
SVR directions are positive and negative, respectively. In the cases 𝑚 = 2 and 𝑚 = 3 a
lower amplitude voltage reference is required to obtain the current set point. In both cases
the torque produced is low, which shows that the voltage and current 50 Hz component
map into the 𝛼2-𝛽2 plane, which does not allow electromechanical energy conversion. The
torque in a perfect sinusoidally distributed machine should be zero in the 𝛼2-𝛽2 plane;
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Figure 2.10: Angle delay step 𝑚 influence in torque in five-phase machine.

nevertheless, the machine used in the tests has a non-perfectly sinusoidally-distributed
stator winding, which explains the fact that the torque is not zero. In the 𝑚 = 5 case,
even with a high voltage amplitude the phase current does not flow. That is because of
the absence of neutral connection; therefore, with 𝑚 = 5 the voltage 50 Hz component
maps onto the ℎ+ homopolar axis. All these experimental results validate the mapping
diagram for the five-phase machine case shown in Fig. 2.4a.

2.4.2 Six-Phase Single Motor Drive

The six-phase motor drive includes a three-phase 1.5 kW induction motor with 24
stator slots that was rewound to form a symmetrical two-pole six-phase star-connected
machine. It is shown in Fig. 2.11. As in the first five-phase experiment the motor is
operated in open-loop mode without mechanical load. The reference voltage to feed the
machine has a 100 V rms fundamental component at 50 Hz and 𝑚 = 1. Harmonics up



2.4. EXPERIMENTAL EVALUATION 53

Figure 2.11: Six-phase induction motor.

to 𝑞 = 12 are injected with an amplitude of 20% the fundamental voltage amplitude.
The neutral points of both three-phase subsets of the six-phase machine are connected,
which allows zero negative sequence current circulation. The CFFT of each symmetrical
component of the motor voltages and currents, which is depicted in Fig. 2.12, shows that
the fundamental component and the 7th harmonic of the machine voltage map into the
𝛼1-𝛽1 plane with positive SVR direction, the 5th and 11th harmonics map into the 𝛼1-𝛽1
plane with negative SVR direction, the 2nd and 8th harmonics map into the 𝛼2-𝛽2 plane
with positive SVR direction, the 4th and 10th harmonics map into the 𝛼2-𝛽2 plane with
negative SVR direction, the 3rd and 9th harmonics map onto the ℎ− axis and the 6th
and 12th harmonics of the machine voltage map onto the ℎ+ axis. As happened in the
five-phase experiment, there is no current harmonic component on the ℎ+ axis because
there is no neutral connection between the VSI and the motor. The harmonic plane and
SVR direction mapping obtained in this experiment matches with the results predicted
by the diagram in Fig. 2.4b for 𝑚 = 1.

In the second experiment, as in the five-phase case, the VSI is operated in open-loop
mode and the voltage amplitude is set in order to obtain per phase currents of 1.5 A.
In each test, the rotor is locked and the per phase current, produced torque and current
between neutral points are measured. In this case six tests are carried out by feeding
the machine with just sinusoidal voltage at 50 Hz and six different values of the angle
delay step 𝑚 = 1, 2, 3, ..., 6 in each one. With 𝑚 = 1 the machine produces a positive
torque, so in this case the voltage and current 50 Hz component maps into the 𝛼1-𝛽1
plane with positive SVR direction. In the 𝑚 = 5 case the torque is negative; therefore,
in this case the 50 Hz component of voltage and current maps into the 𝛼1-𝛽1 plane, but
with negative SVR direction. With 𝑚 = 3 the measurements show no torque and a high
current between the winding neutrals, so, in this case the 50 Hz component of voltage and
current maps into ℎ− axis. With 𝑚 = 2 and 𝑚 = 4 there is no torque and a high phase
current for a low voltage amplitude, so, in both cases the 50 Hz component of voltage and
current maps into 𝛼2-𝛽2 plane. In the 𝑚 = 6 case, even with a high voltage amplitude,
the phase current does not flow. That is because of the absence of neutral connection;
therefore, with 𝑚 = 6 the 50 Hz component of the voltage maps onto the ℎ+ axis. All
these experimental results validate the six-phase mapping diagram.

In the above six experiments with different values of 𝑚 the voltage of the dc link was
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Figure 2.12: Six-phase machine symmetrical components spectrum analysis.

increased up to 500 V so that the system nonlinearities cause large harmonic amplitudes
[65, 85]. The plane mapping and the SVR direction of all those harmonics can be also
predicted with the proposed six-phase diagram in Fig. 2.4b. The traces corresponding to
𝑚 = 1 and 𝑚 = 5 in Fig. 2.13b have a low 3rd harmonic (𝑞 = 3). The subspace mapping
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Figure 2.13: Angle delay step 𝑚 influence in six-phase machine.

of the 3rd harmonic is obtained by counting the vertices of the hexagon counterclockwise
by jumping in steps of 𝑚 from zero to 𝑞 = 3. In both cases, 𝑚 = 1 and 𝑚 = 5, the
obtained vertex is the same, which corresponds to the homoplar ℎ− axis. Consequently,
the 3rd harmonic current flows between the winding neutrals, as it is shown in Fig. 2.13d.
The traces corresponding to 𝑚 = 2 and 𝑚 = 4 in Fig. 2.13b do not have a 3rd current
harmonic and they show significant 5th and 7th harmonics. By means of the six-phase
diagram with 𝑚 = 2 in Fig. 2.4b, the vertices corresponding to 𝑞 = 3, 𝑞 = 5 and 𝑞 = 7
lie on the ℎ+ axis, the 𝛼2-𝛽2 plane with negative SVR direction and the 𝛼2-𝛽2 plane with
positive SVR direction, respectively. With 𝑚 = 4 the vertices corresponding to 𝑞 = 3,
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𝑞 = 5 and 𝑞 = 7 lie on the ℎ+ axis, the 𝛼2-𝛽2 plane with positive SVR direction and
the 𝛼2-𝛽2 plane with negative SVR direction, respectively. In both cases, 𝑚 = 2 and
𝑚 = 4, the 3rd harmonic maps onto the ℎ+ axis, which explains the absence of the 3rd
harmonic current in the measurements. The 5th and the 7th current harmonics map into
the low impedance 𝛼2-𝛽2 plane, which explains the high amplitude of such harmonics in
the measurements.
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Figure 2.14: Connection diagram of the six-phase two-motor drive experiment

2.4.3 Experimental Evaluation of the Series-Connected Six-Phase

Two-Motor Drive

The laboratory setup shown in Fig. 2.7, with a series-connected six-phase two-motor
drive, is used to validate the mapping diagram in a multimotor system. Fig. 2.14 and
Fig. 2.6 represent the connection and the mapping diagrams of the six-phase two-motor
system, respectively. In this experiment two similar 1.5 kW two-pole six-phase machines,
with 24 stator slots each one, are series connected. One of them is the motor previously
used in the single machine experiment.

Both motors are operated in open-loop mode and controlled independently by adding
two different voltage references, one reference [V]*

I
with a delay angle step 𝑚I = 1 and

[V]*
II
with a delay angle step 𝑚II = 2:

[V]* = [V]*
I

+ [V]*
II

= [V*
0,V

*
1, . . . ,V

*
𝜂, . . . ,V

*
𝑛−1]

′ (2.21)

with

V*
𝜂 = A*

I
cos (𝜔*

I
𝑡− 𝜂𝛼𝑐) + A*

II
cos (𝜔*

II
𝑡− 2𝜂𝛼𝑐) (2.22)

where V*
𝜂 is the inverter voltage reference of phase 𝜂, A

*
I
and 𝜔*

I
are the amplitude and

the frequency references of MI, respectively, and A*
II
and 𝜔*

II
are the amplitude and the

frequency references of MII. The mapping diagram for a six-phase two-motor drive in
Fig. 2.6 shows that the first reference, with 𝑚I = 1, maps into the 𝛼1-𝛽1 plane of MI

machine with positive SVR direction, and does not affect the second machine and the
second reference, with 𝑚II = 2, maps into the 𝛼2-𝛽2 plane in MI machine and in the 𝛼1-𝛽1
plane in MII machine with positive SVR direction. Therefore, [V]*

I
controls the MI flux

and torque and [V]*
II
controls the MII flux and torque.

Two experiments are done to map low-order voltage harmonics of [V]*
I
and [V]*

II
in

both motors:

∙ In the first experiment, the VSI voltage reference is the sum of [V]*
I
, [V]*

II
and the
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Figure 2.15: Distribution of [𝑣]I harmonics in both motors.

harmonics of [V]*
I
from the 2nd to the 12th:

V*
𝜂 = A*

I
cos (𝜔*

I
𝑡− 𝜂𝛼𝑐) + A*

II
cos (𝜔*

II
𝑡− 2𝜂𝛼𝑐) +

12∑︁
𝑞=2

A*
I

cos 𝑞(𝜔*
I
𝑡− 𝜂𝛼𝑐). (2.23)

∙ In the second experiment, the VSI reference is the sum of [V]*
I
, [V]*

II
and the har-

monics of [V]*
II
from the 2nd to the 12th:

V*
𝜂 = A*

I
cos (𝜔*

I
𝑡− 𝜂𝛼𝑐) + A*

II
cos (𝜔*

II
𝑡− 2𝜂𝛼𝑐) +

12∑︁
𝑞=2

A*
II

cos 𝑞(𝜔*
II
𝑡− 𝜂𝛼𝑐). (2.24)

In both experiments the amplitude and the frequency of [V]*
I
are set to 120 V and 30 Hz,

respectively. The amplitude and frequency of [V]*
II
are set to 80 V and 20 Hz, respectively,

and the amplitude of the injected harmonics is 20% of the fundamental.
Fig. 2.15 and Fig. 2.16 show the resulting complex spectrum of MI and MII with [V]*

I

harmonic injection. In this experiment it is also proved that the harmonic voltages and
currents that map into a vertex without any related plane in the MII machine diagram
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Figure 2.16: Distribution of the current harmonics due to [𝑣]I.

(see Fig. 2.6) do not affect MII. These harmonics are canceled at the connection points
between MI and MII and do not have any influence on the MII machine. Therefore, in the
MII machine only the 𝛼1-𝛽1 plane and ℎ+ axis are available, so the other planes are not
represented in the CFFT figures of MII. This can be also determined by the equivalence
of the second six-phase machine to a three-phase machine. As in the single machine
experiment, the fundamental, 5th, 7th and 11th harmonics of [V]*

I
map into the 𝛼1-𝛽1

plane of MI and the 2nd, 4th, 8th and 10th harmonics of [V]*
I
map into the 𝛼2-𝛽2 plane

of MI. The voltage harmonics that map into the 𝛼2-𝛽2 plane of MI map into the 𝛼1-𝛽1
plane of MII. Therefore, the 2nd, 4th, 8th and 10th harmonics of [V]*

I
produce distortion

in the MII machine torque. Odd order harmonics of [V]*
I
do not have influence on MII.

The 6th and 12th harmonics of [V]*
I
maps onto the ℎ+ axis of MII. The amplitude of the

voltage harmonics in the 𝛼2-𝛽2 plane of MI is much lower than in the 𝛼1-𝛽1 plane of MII.
It is because both planes share the same current and the 𝛼2-𝛽2 plane of MI has lower
impedance. Table 2.1 summarizes the experimental [V]*

I
harmonic distribution in the

multimotor system. These results validate the proposed diagram for a series-connected
six-phase two-motor drive in the 𝑚 = 1 case represented in Fig. 2.6.

Fig. 2.17 and Fig. 2.18 show the resulting voltage and current complex spectra of MI



60 CHAPTER 2. TIME HARMONIC MAPPING

−300 −200 −100 0 100 200 300
0

50

100
α−β plane

1fI

−300 −200 −100 0 100 200 300
0

5

10
x−y plane

2fII
1fII 4fII5fII 7fII8fII 10fII11fII

−300 −200 −100 0 100 200 300
0

5

10
h+ axis

−300 −200 −100 0 100 200 300
0

5

10
h− axisv(V)

f(Hz)

v(V)

f(Hz)

v(V)

f(Hz)

v(V)

f(Hz)

(a) MI (six-phase) voltage spectrum.

−300 −200 −100 0 100 200 300
0

50

100
α−β plane

1fII2fII 4fII5fII 7fII8fII 10fII11fII

−300 −200 −100 0 100 200 300
0

10

20

h+ axis

3f
II3fII 6fII6fII 9fII9fII 12fII12fII

v(V)

f(Hz)

v(V)

f(Hz)

(b) MII (three-phase) voltage spectrum.

Figure 2.17: Distribution of [𝑣]II harmonics.

Table 2.1

[V]*
I
Harmonic Distribution in the Multimotor System

Harmonic order 1 2 3 4 5 6

MI machine 𝛼1-𝛽
+
1 𝛼2-𝛽

+
2 ℎ− 𝛼2-𝛽

−
2 𝛼1-𝛽

−
1 —

MII machine — 𝛼1-𝛽
+
1 — 𝛼1-𝛽

−
1 — ℎ+

Harmonic order 7 8 9 10 11 12

MI machine 𝛼1-𝛽
+
1 𝛼2-𝛽

+
2 ℎ− 𝛼2-𝛽

−
2 𝛼1-𝛽

−
1 —

MII machine — 𝛼1-𝛽
+
1 — 𝛼1-𝛽

−
1 — ℎ+
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Figure 2.18: Distribution of [𝑣]II harmonics.

and MII with [V]*
II
harmonic injection, which are summarized in Table 2.2. It shows that

the 2nd, 4th, 5th, 7th, 8th, 10th and 11th harmonics of [V]*
II
map into the 𝛼1-𝛽1 plane

of MII and into the 𝛼2-𝛽2 plane of MI. Therefore, any of them has influence on the MI

machine torque. The 3rd, 6th, 9th and 12th harmonics of [V]*
II
map onto the ℎ+ axis

of MII. These results match with the diagram for series-connected six-phase two-motor

Table 2.2

[V]*
II
Harmonic Distribution in the Multimotor System

Harmonic order 1 2 3 4 5 6

MII machine 𝛼1-𝛽
+
1 𝛼1-𝛽

−
1 ℎ+ 𝛼1-𝛽

+
1 𝛼1-𝛽

−
1 ℎ+

MI machine 𝛼2-𝛽
+
2 𝛼2-𝛽

−
2 — 𝛼2-𝛽

+
2 𝛼2-𝛽

−
2 —

Harmonic order 7 8 9 10 11 12

MII machine 𝛼1-𝛽
+
1 𝛼1-𝛽

−
1 ℎ+ 𝛼1-𝛽

+
1 𝛼1-𝛽

−
1 ℎ+

MI machine 𝛼2-𝛽
+
2 𝛼2-𝛽

−
2 — 𝛼2-𝛽

+
2 𝛼2-𝛽

−
2 —
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Figure 2.19: Torque ripple due to harmonic interaction.

drive in the 𝑚 = 2 case represented in Fig. 2.6.

Torque Ripple Tests

The results shown in Table 2.1 and Table 2.2 are validated through the measurement
of the torque ripple produced by each harmonic in MI and MII. As in the previous
experiments, the six-phase machine is driven with a voltage reference [𝑣]I with 𝐴*

I
= 100 V,

𝑓I = 30 Hz and the three-phase machine with a voltage reference [𝑣]II with 𝐴*
II

= 100 V
and 𝑓II = 20 Hz. The torque in each machine is meassured by using a Apicom FR5ME
motor test bench equipped with a CCT Transducers TR-100 torque sensor. The torque
sensor bandwidth is low, so torque harmonics higher than 100 Hz cannot be measured.
The electrical brake of the test bench is used to set the machine torque production around
0.05 N m in all experiments. A set of six experiments are done.

∙ In the first experiment, Test 1 in Table 2.3, the torque in each machine is measured
when the system is fed with only the three- and six-phase machines fundamental
voltages in order to compare their torque and speed curves with the ones obtained
with harmonic disturbances.

∙ The next two experiments, Test 2 and Test 3, assess the [𝑣]I harmonics interaction
with the torque in MI and MII when the driver is fed with both fundamental voltages
([𝑣]I and [𝑣]II) and 2nd harmonic of [𝑣]I in one experiment and the 3rd harmonic in
the other one.
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Table 2.3

Torque Ripple Test Set

Harmonic order Voltage reference to converter

Test 1 [𝑣]I + [𝑣]II

Test 2 [𝑣]I + [𝑣]II + 2nd harmonic of [𝑣]I

Test 3 [𝑣]I + [𝑣]II + 3rd harmonic of [𝑣]I

Test 4 [𝑣]I + [𝑣]II + 2nd harmonic of [𝑣]II

Test 5 [𝑣]I + [𝑣]II + 3rd harmonic of [𝑣]II

Test 6 [𝑣]I + [𝑣]II + 4th harmonic of [𝑣]II

∙ The last three experiments, Test 4, Test 5 and Test 6 in Table 2.3, test the [𝑣]II
harmonics interaction with torque in MI and MII when the driver is fed with both
fundamental voltages ([𝑣]I and [𝑣]II) and with the 2nd, 3rd and 4th harmonics of
[𝑣]II in each experiment.

Fig. 2.19 shows the torque measurement of the MI and MII machines in the six ex-
periments merged into two plots, one for the torque of machine MI and the other one for
the torque of machine MII. Measurements in Test 2 show that the 2nd order harmonic of
[𝑣]I does not affect MI torque but produces torque ripple in MII. In Test 3 and Test 5 the
measurements show no torque ripple in any of the two machines; so, the 3rd harmonics
of [𝑣]I and [𝑣]II do not produce torque ripple in the dual six-phase motor drive. In both
Test 4 and Test 6, Fig. 2.19 shows that there is torque ripple in the machine MII. There-
fore, the 2nd and 4th harmonics of [𝑣]II produce torque disturbances in the three-phase
machine but do not affect the six-phase machine. These results corroborate the harmonic
distribution reflected in Tables 2.1 and 2.2.

The harmonics of the three-phase source do not affect the six-phase machine torque and
only even harmonics of the six-phase source affect the three-phase machine, harmonics
with the order multiple of six, which map onto the positive homopolar axis, and the
others, 2nd, 4th, 8th, 10th,..., 𝑘 = 6𝑗 ± 2 (𝑗 = 0, 1, 2, 3...), which map into the 𝛼-𝛽 plane.
Non-linearities, such as deadtime produce symmetrical distortion of the currents, so they
only cause odd order harmonics [65]. Faults and imbalance of the feeding system can
produce non-symmetrical distortion and, as a result, odd and even harmonics [84, 88].
Therefore, in normal operation with a balanced feeding system and if both machines have
sinusoidal stator winding distribution, even current harmonics, and hence, the effect of
torque interactions between both machines can be neglected.
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Figure 2.21: Connection diagram of the five-phase two-motor drive experiment.

2.4.4 Experimental Evaluation of the Series-Connected Five-Phase

Two-Motor Drive with Spatial Harmonics

The laboratory setup shown in Fig. 2.20 is used to study the harmonic distribution in
the series-connected five-phase two-motor drive and the cross harmonic interactions in the
torque production between the machines. Fig. 2.21 represents the connection diagram of
the system. The first series-connected motor MI is a 1.5 kW fractional-slot four-pole five-
phase motor with 50 slots. The second motor MII is a 0.75 kW fractional-slot four-pole
five-phase motor with 30 slots. The converters, the hardware platform for the control and
the sensors are the same used in the previous six-phase two-motor drive experiment.

The spatial harmonic content of both motors, due to the winding distribution, is
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Figure 2.22: Block diagram of the current control of the VSI.

significant and cannot be neglected1. These winding function harmonics, in combination
with the flux saturation and other nonlinearities of each motor will produce back EMF
harmonics in the stator of both motors. If this experiment is carried out operating the
multimotor drive in open-loop mode as the in the previous ones, the voltage components
due to the spatial harmonics and the converter time harmonics coexist and it is difficult to
differentiate them. In addition, this multimotor drive presents higher crossed interactions
and more harmonic distortion than the previous one. This fact suggests that the back
EMF harmonics due to the spatial harmonics also produce crossed interactions between
the two motors. The mapping of these back EMF harmonics in the multimotor drive and
an analysis of the crossed harmonics between motors helps in the modeling and control
of this system.

The study of the effects of the back EMF harmonics due to the spatial harmonics in the
five-phase two-motor drive is done by feeding the motors with a current with fundamental
component and without low order harmonics, to avoid the effects of the time harmonics.
To achieve this current without low order harmonics, the VSI current is controlled by a
set of resonant controllers in parallel [11]. The block diagram of the current control is
shown in Fig. 2.22. If the current that feeds the system is sinusoidal, Fig. 2.23, the voltage
harmonics that appear in each motor are due to the back EMFs produced by each motor
spatial harmonics:

[𝑣𝑠] = [𝑅𝑠][𝑖𝑠] + [𝐿𝑠𝑠]
𝑑

𝑑𝑡
[𝑖𝑠]⏟  ⏞  

controlled

+
𝑑

𝑑𝑡
[𝐿𝑠𝑟][𝑖𝑟]⏟  ⏞  
𝜈 related

. (2.25)

With this experimental setup, two different experiments are carried out. In the first
experiment the system is fed with a sinusoidal current 𝑖I whose sequence is set to map
into the 𝛼1-𝛽1 plane of the MI motor and into the 𝛼2-𝛽2 of the MII motor. In the second
experiment, the system is fed with a sinusoidal current 𝑖II whose sequence is set to map

1An exhaustive analysis of the stator winding function harmonics of each of these five-phase motors
is carried out in chapter §3.
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MI

vs1

MII

ivsi
vs2

Figure 2.23: Simplified block diagram of the five-phase series-connected drive.

Table 2.4

Back EMF Harmonic Distribution in the Multimotor System When 𝑖VSI = 𝑖I.

Harmonic order 1 2 3 5 7 9 11

MI machine 𝛼1-𝛽
+
1 𝛼2-𝛽

+
2 𝛼2-𝛽

−
2 ℎ+ 𝛼2-𝛽

+
2 𝛼1-𝛽

−
1 𝛼1-𝛽

+
1

MII machine 𝛼2-𝛽
−
2 𝛼1-𝛽

+
1 𝛼1-𝛽

−
1 ℎ+ 𝛼1-𝛽

+
1 𝛼2-𝛽

+
2 𝛼2-𝛽

−
2

into the 𝛼1-𝛽1 plane of the MII motor and into the 𝛼2-𝛽2 of the MI motor. In each
experiment the voltages of both motors and the converter output current per phase are
measured. The complex spectra of these measured signals are shown in Fig. 2.24 and
Fig. 2.25. The back EMF harmonics mapping of the first and second experiment are
summarized in Table 2.4 and Table 2.5, respectively.

The back EMF harmonics produced by the stator winding function and saturation
harmonics when the system is fed with 𝑖1 map in the same subspaces in each motor as the
series-connected five-phase mapping diagram, shown in Fig. 2.5, predicts. The back EMF
harmonics produced by the spatial harmonics when the system is fed with 𝑖2 also map
in the same subspaces in each motor as the series-connected five-phase mapping diagram
predicts.

In the first experiment, the current spectrum in Fig. 2.24a shows only the spectrum of
the current with just a fundamental component at 30 Hz in the 𝛼1-𝛽1 plane with positive
SVR direction. In such test, the voltage spectrum of 𝑀𝐼𝐼 in Fig. 2.24c shows that,
although the system is fed only with 𝑖1, back EMF harmonics rise up in 𝑀𝐼𝐼 . Thus,
contrary to what happens in sinusoidally distributed motors, in this machine the time
harmonics that map into the 𝛼2-𝛽2 plane (in this case, 𝑖1) produce flux in the airgap.
This is also corroborated with the torque measure in this motor.

In the second experiment, the current spectrum in Fig. 2.25a shows only the spectrum
of the current with just a fundamental component at 30 Hz in the 𝛼2-𝛽2 plane with positive
SVR direction. In such test, the voltage spectrum of 𝑀𝐼 in Fig. 2.25b shows back EMF
harmonics. Hence, in 𝑀𝐼 the time harmonics that map into the 𝛼2-𝛽2 plane (in this case,
𝑖2) also produce flux in the airgap, as its torque measure corroborates.

2.4.5 Spatial Harmonic Distortion in Multiphase Motors

In the five-phase (at section §2.4.1) and six-phase (at section §2.4.2) second exper-
iments, the ones where the motors are fed with sinusoidal voltage and the angle delay
step is changed, the harmonic distortion that can be appreciated is not only due to the
converter deadtime; spatial harmonics also contribute to it. These spatial harmonics are
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Table 2.5

Back EMF Harmonic Distribution in the Multimotor System When 𝑖VSI = 𝑖II.

Harmonic order 1 2 3 5 7 9 11

MI machine 𝛼2-𝛽
+
2 𝛼1-𝛽

−
1 𝛼1-𝛽

+
1 ℎ+ 𝛼1-𝛽

−
1 𝛼2-𝛽

−
2 𝛼2-𝛽

+
2

MII machine 𝛼1-𝛽
+
1 𝛼2-𝛽

+
2 𝛼2-𝛽

−
2 ℎ+ 𝛼2-𝛽

+
2 𝛼1-𝛽

−
1 𝛼1-𝛽

+
1

due to the motor nonlinearities such as the magnetic saturation, non-uniform airgap and
winding distribution.

The effects of these harmonics are more remarkable in the five-phase case shown in sec-
tion §2.4.1, where the spatial harmonics due the stator winding distribution and magnetic
saturation are high enough in this motor to give rise to torque production in the 𝛼2-𝛽2.
In a perfectly distributed motor and in absence of other spatial harmonics the 𝛼2-𝛽2 is
not related to the electromechanical energy conversion and does not produce torque, as
it is explained in section §1.2.1.

The effects of the spatial harmonics in the multiphase motor voltage and current
mapping in single motor drives is studied in section §3.

In series-connected multimotor drives, the absence of torque production in planes dif-
ferent from the 𝛼1-𝛽1 plane is a required condition for independent motor speed and
position control. Given that the series-connected motors share stator currents, the mul-
timotor drive uses the phase transposition in the series connection to make sure that
the torque producing currents in one motor map into a non-electromechanical conversion
plane in the other motors. Therefore, motors with high level of spatial harmonics are not
suitable for series-connected multimotor drives.
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Figure 2.24: Harmonic Distribution with 𝑖VSI = 𝑖I.
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Figure 2.25: Harmonic Distribution with 𝑖VSI = 𝑖II.
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2.5 Conclusion

In this chapter, a general (for any number of phases) graphical method for subspace
and SVR direction identification of time harmonics in symmetrical multiphase machines
has been proposed. This graphical method is a simple and fast analytical tool for harmonic
mapping. Through the diagram, subspace and SVR direction identification for even and
odd harmonics can be done. This technique is based in the Unified Electrical Machine
Theory and is valid for synchronous and asynchronous machines. The proposed mapping
diagram can be used in multimotor drives for plane and SVR direction mapping of each
harmonic for every machine of the drive, and it predicts the crossed harmonics between the
series-connected machines. The developed method has been proved for the single motor
drive case through a set of experiments using a five- and a six-phase symmetrical induction
machine and for the multimotor case using a six-phase series-connected two-motor drive.

The last section of the chapter studies the effects of the low-order spatial harmonics
in a series-connected five-phase two-motor drive through experimental results collected
from a laboratory setup.
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Abstract

Squirrel cage motors contain significant stator current distortion. These current harmon-
ics are produced by nonlinearities such as the stator winding distribution, stator and rotor
slots, rotor eccentricities, magnetic saturation, rotor current distribution and converter
nonlinear behavior (e.g., deadtime). The study of the current signature and the causes be-
hind each harmonic is useful for applications such as machine condition monitoring, stator
current harmonic compensation, sensorless speed estimation and torque ripple analysis.
Numerous publications have addressed the stator current harmonics topic in the context
of three-phase induction motors, from detailed analysis of specific harmonic origins to
more general works, such as the healthy motor current signature studies that include the
most common harmonics causes in a healthy motor. In the multiphase motor field, the
studies about the spatial harmonics are not so common and the majority of them are fo-
cused on particular spatial harmonics origins, such as specific faults. In addition, most of
the studies applied to multiphase cases are directly adapted from three-phase cases and,
thus, do not take into account some specific characteristics of the multiphase motors, such
as the different types of subspaces. A general study of the healthy motor signature of
𝑛-phase induction motors that studies together the effects of the most common spatial
harmonics is still to be done. This chapter presents an analysis of the VSD of the stator
currents in 𝑛-phase induction motors that extends the one shown in §2. In addition to
the time harmonics due to the converter, this study also covers the harmonics due to the
stator and the rotor winding distributions, non-uniform airgap and magnetic saturation.
This model is used to analyze the healthy 𝑛-phase motor current spectrum by means of
the VSD. Then, as an example of application, a static, dynamic and mixed eccentricity
detection method, based on the VSD of the motor current signature, is presented. Finally,
the proposed healthy motor current signature and the eccentricity detection method are
experimentally evaluated with two different five-phase squirrel cage motors.
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3.1 Introduction

The use of multiphase motor drives is an increasingly important trend nowadays due
to some advantages such as fault tolerance and the reduction of current stress in power
devices [45, 47, 48, 165, 166]. The stator current of induction motors, both in three-
phase and multiphase ones, usually contains a substantial harmonic distortion. Such
harmonics can be divided into spatial MMF harmonics, caused by the distribution of the
conductors in the stator and the rotor [43]; magnetic permeance harmonics, which are
due to the stator and rotor slots, magnetic saturation and rotor eccentricities [116]; and
those produced by the converter nonlinear behavior, mainly due to deadtime [65, 167].

A detailed knowledge of the stator current harmonics, which define the motor cur-
rent signature, and of the causes behind each of them, is useful for applications such
as condition monitoring [115], current harmonic compensation [4], sensorless rotor speed
estimation based on the rotor slot harmonics [127] or on high frequency signals injec-
tion [123], rotor bar fault detection [168], torque ripple analysis [118] and torque density
enhancement based on harmonic current injection [46].

The effects of spatial harmonics in three-phase induction motors is a broadly researched
topic. The works in the literature go from the most detailed studies focused on the analysis
of motor harmonics due to specific causes, such as magnetic saturation [120], stator and
rotor slots [119] or specific motor faults like rotor eccentricity [111, 153] broken bars
[135, 136] or bearing problems [138]; to more general studies that comprise groups of
harmonics in the healthy motor current spectrum [115, 116, 169] or harmonics produced
by the most common faults [129–131].

In the multiphase induction motor field, to the author’s knowledge, the effects of the
motor nonlinearities on the stator currents are not as broadly analyzed. There are pub-
lications that study motors with a definite phase number, such as [97, 170], which assess
the effects of the magnetic saturation in five-phase induction motors or [122], which stud-
ies the healthy current signature and the eccentricity harmonics in a dual three-phase
induction motor. With a more general point of view, there are studies about the effects of
nonlinearities for any number of phases, but focused on the torque ripple and the mechan-
ical vibration and noise, not on the current signature [43, 118]. The multiphase motor
model presented by [42] is valid for analyzing the stator current symmetrical components
and includes the effects of the stator winding distribution and rotor bar harmonics, but
it is obtained under the assumptions of uniform airgap and negligible saturation. Hence,
it is not valid to study the induced currents due the stator and rotor slots, saturation
harmonics and eccentricities. In the field of the MCSA, Bruzzese [60] addresses rotor
bar breakage detection in 𝑛-phase motors by using transformations based on symmetrical
components to detect the particular current signature symptoms of broken rotor bars in
the stator current. Furthermore, from the previously mentioned multiphase works, only
[97, 170] take into account specific characteristics of multiphase motors, such as the low
impedance planes, where back EMFs with a modest amplitude can produce important
current harmonics, but, as has been mentioned previously, they are focused only on sat-
uration harmonics in five-phase motors. Therefore, an analysis of the current signature
for any number of phases and including the harmonics due to a wide variety of types of
non-ideal motor characteristics, despite its practical interest, is still to be performed.

It is a common practice in works that propose the use of MCSA to detect static
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eccentricity, for three-phase [116] or dual three-phase [122] drives, to study first the healthy
motor current signature. The reason is that static eccentricity does not produce any new
harmonic in the current spectrum of the motor, although it can modify the amplitude
of the ones the healthy motor already has [133]. The most extended static eccentricity
MCSA method in three-phase motors is the one based on the monitoring of the rotor slot
and bar harmonics [114, 116, 171]. However, in three-phase drives, this method is proved
to be valid only for specific neutral connection configurations and specific values of 𝑄𝑠,
𝑄𝑟 and 𝑃 [126, 130], and, in the multiphase motors field it was only tested for a specific
dual three-phase motor [122].

This chapter analyzes the stator currents VSD in a 𝑛-phase squirrel cage motor. The
proposed equations to model the stator current harmonics extend the ones shown in chap-
ter §2 and include the effects of the stator winding distribution harmonics, non constant
airgap, rotor bar harmonics and magnetic flux saturation on the stator current spectrum.
By using this model, the healthy 𝑛-phase motor current signature is studied by means of
the VSD and the subspace and the SVR speed of each current component is obtained.
Mapping of the stator current by means of VSD reduces the harmonic overlapping, in com-
parison to three-phase studies or to methods based only on frequency, and provides more
information about the harmonic origin. Then, a MCSA method to detect pure static,
pure dynamic and mixed eccentricity, based on the VSD of the healthy motor current
spectrum is proposed. Finally, experimental results with two different five-phase squir-
rel cage motors validate the predicted healthy motor current signature and the proposed
MCSA method.
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Figure 3.1: Harmonic analysis workflow graph and correspondence with section numbers
(in red).

3.2 𝑛-Phase Healthy Motor Drive Flux Harmonics

The workflow diagram of the current signature study in symmetrical multiphase squir-
rel cage motors is depicted in Fig. 3.1. In section §3.2.2, the airgap flux density due to
the stator is obtained from the MMF harmonics of the multiphase winding calculated in
section §3.2.1 in combination with the permeance harmonics and the magnetic satura-
tion. The total flux density in the airgap is calculated in section §3.2.4 by adding the
rotor flux studied in section §3.2.3 to the stator flux. The stator currents induced by the
flux harmonics are assessed in section §3.3.2, after the identification of the flux harmonics
linked by the multiphase stator winding in section §3.3.1. Finally, in section §3.3.4 the
multiphase mapping of all these induced stator currents is determined.

3.2.1 Stator MMF Harmonics

To obtain the MMF in the airgap produced by the multiphase stator, one option is to
use the current sheets [41, 43].

Multiphase motor fed from a VSI

To obtain the stator MMF, it is necessary to know the stator current distribution in
the space. If the motor is fed from a current source, the input current is known. However,
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Figure 3.2: Equivalent circuit of the stator phase 𝜂.

+

Figure 3.3: Equivalent circuit of the 𝜂 phase decomposed into source synchronous har-
monics and non-synchronous harmonics.

in most cases multiphase motors are fed from a voltage source, such as a VSI. In these
cases, the input voltage is known and can be represented in a generic form as in (2.5).

The equivalent circuit of a 𝜂 phase of the stator is depicted in Fig. 3.2, in which 𝑍
is the phase impedance and 𝑒s𝜂 is the back EMF. The back EMF can contain voltage
harmonics synchronous with the voltage source and harmonics with a frequency which
varies with the rotational speed of the motor [169]. The back EMF harmonics can be
represented in a general form as

𝑒s𝜂 =
∞∑︁
𝑞=1

∞∑︁
𝑞′=1

∞∑︁
𝑚=−∞
𝑚̸=0

̂︀𝑒𝑞,𝑞′,𝑚 sin (𝑞𝜔𝑠𝑡+ 𝑞′𝜔𝑟𝑡−𝑚𝜂𝛼c + 𝜑𝑞,𝑞′,𝑚) (3.1)

where 𝑞′ is the order of the time harmonics related to the rotor speed, 𝜔𝑟 is the rotational
speed and 𝜑𝑞,𝑞′,𝑚 is the back EMF delay angle.

The back EMF described in (3.1) can be decomposed into two components as

𝑒s𝜂 =
∞∑︁
𝑞=1

̂︀𝑒𝑞 |𝑞′=0
𝑚=𝑞

sin

(︂
𝑞𝜔𝑠𝑡− 𝑞𝜂𝛼c + 𝜑𝑞 |𝑞′=0

𝑚=𝑞

)︂
⏟  ⏞  

𝑒𝑠𝑣𝜂

(3.2)

+
∞∑︁
𝑞=1

∞∑︁
𝑞′=1

∞∑︁
𝑚=−∞
𝑚̸=𝑞

̂︀𝑒𝑞,𝑞′,𝑚 sin (𝑞𝜔𝑠𝑡+ 𝑞′𝜔𝑟𝑡−𝑚𝜂𝛼c + 𝜑𝑞,𝑞′,𝜈)

⏟  ⏞  
𝑒𝑒𝜂

=𝑒𝑠𝑣𝜂 + 𝑒𝑠𝑒𝑠𝜂

where 𝑒𝑠𝑣𝜂 is the component of the back EMF synchronous with the voltage source and
𝑒𝑠𝑒𝑠𝜂 is the non-synchronous component.
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The equivalent phase circuit for each of these components are depicted in Fig. 3.3. The
current in the stator phase 𝜂 can be calculated as the summation of the two components
shown in this figure, 𝑖𝑠𝑣𝜂 and 𝑖

𝑠
𝑒𝑠𝜂
:

𝑖𝑠𝜂 = 𝑖𝑠𝑣𝜂 − 𝑖𝑠𝑒𝑠𝜂 (3.3)

where 𝑖𝑠𝑣𝜂 >> 𝑖𝑠𝑒𝑠𝜂 .
It is assume that the contribution of 𝑖𝑠𝑒𝑠𝜂 to the stator current sheets is lower than

the contribution of 𝑖𝑠𝑣𝜂 . Hence, in this work the stator MMF is calculated by taking into
account only the latter. Therefore, in order to calculate the stator MMF, the current
through each phase 𝜂 of the windings is represented in a general form as

𝑖s𝜂 =
∞∑︁
𝑞=1

𝑖s𝜂,𝑞 =
∞∑︁
𝑞=1

̂︀𝑖𝜂,𝑞 sin (𝑞(𝜔𝑠𝑡− 𝜂𝛼c) + 𝜑𝑞) (3.4)

where ̂︀𝑖𝜂,𝑞 is the current harmonic amplitude.
Current Sheets in a Multiphase Stator

According to [41, 43] the current sheets are obtained from the winding distribution
and the phase currents of the stator. The spatial winding distribution of a phase 𝜂 can
be expressed by using the Fourier series decomposition [107, 170] as

𝐾s

𝜂 =
∞∑︁
𝜈=1

𝐾s

𝜂,𝜈 =
∞∑︁
𝜈=1

̂︀𝐾𝑠
𝜂,𝜈 cos (𝜈(𝑃𝜃 − 𝜂𝛼c) + 𝜑𝜈). (3.5)

The next step is to study how these harmonics interact with the phase currents to
produce the MMF in the airgap.

The current sheet in the airgap produced by the current 𝑖s𝜂 flowing through one phase
with the winding distribution function 𝐾s

𝜂 is [41, 43]

𝐽 s

𝜂 =
∞∑︁
𝑞=1

∞∑︁
𝜈=1

𝐽 s

𝜂,𝜈,𝑞 =
∞∑︁
𝑞=1

∞∑︁
𝜈=1

𝐾s

𝜂,𝜈𝑖
s

𝜂,𝑞 (3.6)

and, by applying (3.5) and (3.4), it becomes

𝐽 s

𝜂 =
∞∑︁
𝑞=1

∞∑︁
𝜈=1

̂︀𝐽 s

𝜂,𝜈,𝑞 sin (𝑞𝜔𝑠𝑡− 𝜂𝑞𝛼c + 𝜑𝑞) cos(𝜈𝑃𝜃 − 𝜂𝜈𝛼c + 𝜑𝜈) (3.7)

where ̂︀𝐽 s

𝜂,𝜈,𝑞 = ̂︀𝑖𝜂,𝑞 ̂︀𝐾𝑠
𝜂,𝜈 , is the current sheet amplitude per phase.

MMF Produced by the Current Sheets

The MMF in the airgap due to the stator current sheets generated by phase 𝜂 is
calculated by Ampere’s Law [107]:

𝐹 s

𝜂 =
∞∑︁
𝑞=1

∞∑︁
𝜈=1

(︀𝑟𝑠
2

∫︁ 𝜃+𝜋/(𝜈𝑃 )

𝜃

𝐽 s

𝜂,𝜈,𝑞𝑑𝜃
)︀

(3.8)
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where 𝑟𝑠 is the stator inner radius. Therefore, from (3.7) and (3.8),

𝐹 s

𝜂 =
∞∑︁
𝑞=1

∞∑︁
𝜈=1

̂︀𝐹 s

𝜂,𝜈,𝑞[ cos (𝜈𝑃𝜃 − 𝑞𝜔𝑠𝑡− (𝜈 − 𝑞)𝜂𝛼c + 𝜑𝜈 − 𝜑𝑞)

− cos (𝜈𝑃𝜃 + 𝑞𝜔𝑠𝑡− (𝜈 + 𝑞)𝜂𝛼c + 𝜑𝜈 + 𝜑𝑞)] (3.9)

where ̂︀𝐹 s

𝜂,𝜈,𝑞 = 𝑟𝑠 ̂︀𝐽 s

𝜂,𝜈,𝑞/(2𝜈𝑃 ). By allowing 𝜈 to take positive and negative values, (3.9)
can be rewritten as

𝐹 s

𝜂 =
∞∑︁
𝑞=1

∞∑︁
𝜈=−∞
𝜈 ̸=0

̂︀𝐹 s

𝜂,𝜈,𝑞 cos (𝜈𝑃𝜃 − 𝑞𝜔𝑠𝑡− (𝜈 − 𝑞)𝜂𝛼c + 𝜑𝜈 − 𝜑𝑞⏟  ⏞  
𝜑𝑞,𝜈

) (3.10)

where 𝜑𝜈 = −𝜑−𝜈 and ̂︀𝐹 𝑠
𝜂,𝜈,𝑞 = − ̂︀𝐹 𝑠

𝜂,−𝜈,𝑞, and consequently, for every stator distribution
harmonic, both the positive 𝜈 and negative −𝜈 values should be evaluated.

A balanced system, in which the current sheets have the same amplitude for all the
phases, is considered. The stator MMF calculated as the summation of all the phases in
(3.10) becomes

𝐹 s

𝜈,𝑞 =
𝑛−1∑︁
𝜂=0

𝐹 s

𝜂,𝜈,𝑞 = ̂︀𝐹 s

𝜈,𝑞

𝑛−1∑︁
𝜂=0

cos (𝜈𝑃𝜃 − 𝑞𝜔𝑠𝑡− (𝜈 − 𝑞)𝜂𝛼c + 𝜑𝑞,𝜈) (3.11)

where ̂︀𝐹 s

𝜈,𝑞 = ̂︀𝐹 s

𝜂,𝜈,𝑞 ∀𝜂 = {0, 1, ..., 𝑛−1}. This summation can be simplified by using the
roots of unity theory [5] as

𝐹 s

𝜈,𝑞 = ̂︀𝐹 s

𝜈,𝑞𝑎𝜈,𝑞 cos (𝜈𝑃𝜃 − 𝑞𝜔𝑠𝑡+ 𝜑𝑞,𝜈) (3.12)

where

𝑎𝜈,𝑞 =
{︁𝑛 if 𝜈=𝑞+𝑘𝑛

0 if 𝜈 ̸=𝑞+𝑘𝑛
(3.13)

with 𝑘 being an integer number. Hence, the stator winding distribution harmonics 𝜈 that
produce MMF in the airgap for a given stator current harmonic 𝑞 can be calculated by

𝜈 = 𝑞 + 𝑘𝑛. (3.14)

Concerning (3.14), for a given time harmonic 𝑞, the following aspects can be remarked.

∙ The combinations {𝜈, 𝑞} that satisfy (3.14) produce a MMF in the airgap with pole
pairs 𝜈𝑃 and rotational speed 𝑞𝜔𝑠/(𝜈𝑃 ).

∙ If none of the stator distribution harmonics makes (3.14) true for a given time
harmonic 𝑞, this current harmonic does not produce MMF in the airgap.

For positive values of 𝑞𝜔𝑠/(𝜈𝑃 ) the resulting MMF rotates in the same direction as the
fundamental one; this direction is considered as positive. The opposite direction is con-
sidered as negative. There are combinations {𝜈, 𝑞} that satisfy (3.14) for the positive and
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Stator and rotor 
slot harmonics

Saturation
harmonics

: Converter time harmonics

Uniform airgap
harmonics

If the motor has   , such that

If the motor does not have   ,
such that

Figure 3.4: Stator field 𝐵s harmonics classification in a healthy motor.

negative values of 𝜈 at the same time. These {𝜈, 𝑞} combinations produce MMF com-
ponents rotating in the positive and negative rotation directions, which, when combined,
result in a pulsating MMF in the airgap, which does not rotate.

For example, in a five-phase (𝑛 = 5) four pole (𝑃 = 2) motor fed only with a sinusoidal
current (𝑞 = 1), according to (3.14) the distribution harmonics that produce MMF in the
airgap are 𝜈 = {...,−14,−9,−4, 1, 6, 11, ...}. If the stator winding distribution harmonics
are 𝜈 = {±1,±3,±5,±7,±9}, only the combination of time and distribution harmonics
{𝜈, 𝑞} = {1, 1} causes a MMF with positive rotation direction in the airgap with 2 pole
pairs and a rotational speed 𝜔𝑠/2. Additionally, the combination {𝜈, 𝑞} = {−9, 1} pro-
duces a MMF with negative rotation direction with −18 pole pairs and a rotational speed
−𝜔𝑠/18. In case the current feeding this motor contains a fifth harmonic 𝑞 = 5, the combi-
nation {𝜈, 𝑞} = {5, 5} causes a MMF with positive rotation direction and {𝜈, 𝑞} = {−5, 5}
produces a MMF with negative one, both with equal amplitude. The union of the two
waves results in a pulsating MMF in the airgap.

Equation (3.14) extends the one presented in [43] with the consideration of even stator
winding distribution harmonics. The study of such harmonics is needed in the case of
fractional slot motors [100, 172] or in case the even 𝜈 harmonics arise due to the number
of stator slots [99, 172].

3.2.2 Flux Density Harmonics Produced by the Stator

The MMF in the airgap in combination with each of the permeances considered in
section §3.2.1 produces additional flux density components in the airgap.

In case of a uniform airgap, the flux density component produced by the stator MMF
shown in (3.12) and the uniform airgap permeance Λ0 is

𝐵s

0,𝜈,𝑞 = 𝐹 s

𝜈,𝑞Λ0 = ̂︀𝐵s

0,𝜈,𝑞 cos (𝜈𝑃𝜃 − 𝑞𝜔𝑠𝑡+ 𝜑𝑞,𝜈) (3.15)
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where ̂︀𝐵s

0,𝜈,𝑞 = Λ0𝑎𝜈,𝑞 ̂︀𝐹 s

𝜈,𝑞. The 𝐵s

0,𝜈,𝑞 flux density has 𝑃𝑜,𝜈,𝑞 = 𝜈𝑃 pole pairs and its
frequency is 𝜔𝑜,𝜈,𝑞 = 𝑞𝜔𝑠 and its delay angle is 𝜑𝑞,𝜈 . The rotation speed and direction in
the airgap of each 𝐵s

0,𝜈,𝑞 component is given by the relation 𝜔0,𝜈,𝑞/𝑃
𝑠
0,𝜈,𝑞, and the values of

𝜈 and 𝑞 must accomplish (3.14).
The amplitude, the pole pairs, the frequency and the delay angle, characterize any

flux density component in the airgap, but in this work only the frequency and the pole
pair number are studied, because they are the parameters that are used to identify the
origin of the harmonics in the current signature. Fig. 3.4 summarizes the pole pairs and
frequency of the stator flux density harmonics due to different causes. Each branch of the
diagram covers the harmonics produced by one type of the considered permeances. As
a case in point, the Λ0 branch shows the pole pairs and angular frequencies of the flux
density due to the uniform airgap permeance, 𝐵s

0,𝜈,𝑞.
In the previous five-phase motor example, the pole pairs and angular frequency of the

flux density components produced by the MMF with positive rotation direction, {𝜈, 𝑞} =
{1, 1}, and the uniform airgap permeance Λ0 are 𝑃0,1,1 = 𝑃 = 2 and 𝜔0,1,1 = 𝜔𝑠, while
the flux produced by the MMF with negative rotation direction, {𝜈, 𝑞} = {−9, 1}, has
𝑃0,−9,1 = −18 and 𝜔0,−9,1 = 𝜔𝑠.

Flux Density Harmonics Due to the Stator and Rotor Slots

In addition to the flux density considering uniform airgap, the flux has extra compo-
nents because of the variation of the airgap due to the stator and the rotor slots. Such
extra components are calculated from the permeance shown in (1.40) and the stator MMF
shown in (3.12) as

𝐵s

𝑠𝑙𝑡,𝜈,𝑞 = 𝐹 s

𝜈,𝑞Λ𝑠𝑙𝑡 = ̂︀𝐵s

𝑠𝑙𝑡,𝜈,𝑞[ cos (𝑃++
𝑠𝑙𝑡 𝜃 − 𝜔+

𝑠𝑙𝑡𝑡+ 𝜑+
𝑞,𝜈) + cos (𝑃−−

𝑠𝑙𝑡 𝜃 − 𝜔−
𝑠𝑙𝑡𝑡+ 𝜑+

𝑞,𝜈)

cos (𝑃+−
𝑠𝑙𝑡 𝜃 − 𝜔−

𝑠𝑙𝑡𝑡+ 𝜑+
𝑞,𝜈) + cos (𝑃−+

𝑠𝑙𝑡 𝜃 − 𝜔+
𝑠𝑙𝑡𝑡+ 𝜑+

𝑞,𝜈)] (3.16)

where ̂︀𝐵s

𝑠𝑙𝑡,𝜈,𝑞 = ̂︀𝐵s

0,𝜈,𝑞
̂︀Λ𝑠𝑙𝑡 and

𝑃++
𝑠𝑙𝑡 = 𝜈𝑃 + ℎ𝑠𝑠𝑄𝑠 + ℎ𝑠𝑟𝑄𝑟 𝑃+−

𝑠𝑙𝑡 = 𝜈𝑃 + ℎ𝑠𝑠𝑄𝑠 − ℎ𝑠𝑟𝑄𝑟

𝑃−+
𝑠𝑙𝑡 = 𝜈𝑃 − ℎ𝑠𝑠𝑄𝑠 + ℎ𝑠𝑟𝑄𝑟 𝑃−−

𝑠𝑙𝑡 = 𝜈𝑃 − ℎ𝑠𝑠𝑄𝑠 − ℎ𝑠𝑟𝑄𝑟

𝜔+
𝑠𝑙𝑡 = 𝑞𝜔𝑠 + ℎ𝑠𝑟𝑄𝑟𝜔𝑟 𝜔−

𝑠𝑙𝑡 = 𝑞𝜔𝑠 − ℎ𝑠𝑟𝑄𝑟𝜔𝑟 (3.17)

where ℎ𝑠𝑠 represents the stator slot harmonic order that affects the stator produced flux
and ℎ𝑠𝑟 represents the rotor slot harmonic order that affects the stator flux. Equations
(3.16) and (3.17) show that, for each combination of ℎ𝑠𝑠 and ℎ

𝑠
𝑟, the 𝐹

s

𝜈,𝑞 component of the
stator MMF produces several flux density waveforms in the airgap with 𝑃++

𝑠𝑙𝑡 , 𝑃
+−
𝑠𝑙𝑡 , 𝑃

−+
𝑠𝑙𝑡

and 𝑃−−
𝑠𝑙𝑡 pole pairs and 𝜔+

𝑠𝑙𝑡 and 𝜔
−
𝑠𝑙𝑡 angular frequencies.

For example, considering just the fundamental component of the MMF 𝐹 s

1,1 produced
by {𝜈, 𝑞} = {1, 1} in the five-phase squirrel cage motor represented by 𝑀𝑛,𝑃

𝑄𝑠,𝑄𝑟
= 𝑀5,2

30,22,
with two pole pairs, 𝑄𝑠 = 30 stator slots and 𝑄𝑟 = 22 rotor slots. From Fig. 3.4,
the slots permeance Λ𝑠𝑙𝑡 produces four flux components in the airgap; their pole pairs
and frequencies are 𝑃++

𝑠𝑙𝑡 = 2 + 30ℎ𝑠𝑠 + 22ℎ𝑠𝑟, 𝑃
−+
𝑠𝑙𝑡 = 2 − 30ℎ𝑠𝑠 + 22ℎ𝑠𝑟 with a frequency

𝜔+
𝑠𝑙𝑡 = 𝜔𝑠 + 22𝜔𝑟ℎ

𝑠
𝑟, and 𝑃

+−
𝑠𝑙𝑡 = 2 + 30ℎ𝑠𝑠 − 22ℎ𝑠𝑟 𝑃

−−
𝑠𝑙𝑡 = 2 − 30ℎ𝑠𝑠 − 22ℎ𝑠𝑟 with a frequency

𝜔−
𝑠𝑙𝑡 = 𝜔𝑠 − 22𝜔𝑟ℎ

𝑠
𝑟.
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Saturation Harmonics

As a consequence of iron saturation, the magnetic field waveform changes and hence,
new harmonics are produced. Saturation harmonics can be modeled as a series of odd
harmonics in the airgap flux distribution. These harmonic flux components travel in the
airgap with the same angular speed as the corresponding airgap flux component, always
keeping the phase synchronism with it. In the case of teeth saturation harmonics, their
phases are such that tend to flatten the waveform of the flux that caused the saturation,
and in the case of core saturation, their phases tend to produce a peaked waveform in
the corresponding flux [97, 110, 120]. Therefore, in the case where the airgap flux density
component that causes the iron saturation harmonics is 𝐵s

0,𝜈,𝑞, the produced harmonics
are

𝐵s

𝜌,𝑞,𝜈 = 𝐾𝜌𝑠
̂︀𝐵s

0,𝜈,𝑞 cos (𝜌𝑠𝜈𝑃𝜃 − 𝜌𝑠𝑞𝜔𝑠𝑡+ 𝜌𝑠𝜑+
𝑞,𝜈 + 𝜑𝜌s) (3.18)

where 𝜌𝑠 represents the saturation harmonic order that affects the stator flux and 𝐾𝜌𝑠 is
the amplitude factor corresponding to each 𝜌𝑠.

For example, in𝑀𝑛,𝑃
𝑄𝑠,𝑄𝑟

= 𝑀5,2
30,22, the interaction between the fundamental component

of the flux𝐵s

0,1,1 and the third order saturation harmonic 𝜌
𝑠 = 3 produces a flux component

with 𝑃𝜌𝑠,𝜈,𝑞 = 𝑃3,1,1 = 3𝑃 = 6 and 𝜔𝜌𝑠,𝜈,𝑞 = 𝜔3,1,1 = 3𝜔𝑠.

Total Flux Density Produced by the Stator

The total flux density produced by the stator can be calculated as

𝐵𝑠
𝜈,𝑞 = 𝐹 s

𝜈,𝑞(Λ0 + Λ𝑠𝑙𝑡) +𝐵𝑠
𝜌,𝜈𝑞 (3.19)

= 𝐵s

0,𝜈,𝑞 +𝐵s

𝑠𝑙𝑡,𝜈,𝑞 +𝐵s

𝜌,𝑞,𝜈 .

Fig. 3.4 gathers the pole pair number and frequencies of the different harmonics of
the stator flux calculated in (3.15), (3.17) and (3.18). The first step to use the figure
is to choose the 𝑞 and 𝜈 values to study, whose combination produces the MMF in the
airgap. The next step is to locate the branch of the harmonic permeance to analyze.
Each permeance branch in Fig. 3.4 indicates if it produces one, two or four simultaneous
flux density components in the airgap, as well as their pole pair number and frequency
equations. For example, the interaction of the fundamental component of the motor
current 𝑞 = 1 with the fundamental component of the stator winding distribution 𝜈 = 1
satisfies the equation 𝜈 − 𝑞 = 𝑘𝑛 of Fig. 3.4. Therefore, the set of harmonics it produces
belongs to the first group in the figure, the harmonics generated by the MMF with positive
rotation direction. The first branch of this harmonic group in Fig. 3.4 gives the frequency
𝜔0,1,1 = 𝜔𝑠 and pole pairs 𝑃0,1,1 = 𝑃 of the flux density produced by this MMF and the
ideal permeance Λ0. The second branch of this harmonic set in Fig. 3.4 covers the slot
harmonics. Without taking into account the stator slot harmonics ℎ𝑠 = 0, the first order
rotor slot harmonic ℎ𝑟 = 1 produces two flux density components. One of them has a
frequency and a pole pair number of 𝜔ℎ𝑟=1 = 𝜔𝑠+𝑄𝑟𝜔𝑟 and 𝑃ℎ𝑟=1 = 𝑃 +𝑄𝑟 and the other
one has a frequency 𝜔ℎ𝑟=1 = 𝜔𝑠−𝑄𝑟𝜔𝑟 and pole pair number of 𝑃ℎ𝑟=1 = 𝑃 −𝑄𝑟. On the
contrary, if only the first order stator slot harmonics ℎ𝑠 = 1 are evaluated, two flux density
components of the same frequency 𝜔ℎ𝑠=1 = 𝜔𝑠 and pole pair numbers of 𝑃ℎ𝑠=1 = 𝑃 +𝑄𝑠

and 𝑃ℎ𝑠=1 = 𝑃 + 𝑄𝑠 arise. The frequency and pole pairs of the flux density due to the
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𝜌 = 3 saturation harmonic, in the Λ𝜌 branch of Fig. 3.4, are 𝜔𝜌=3 = 3𝜔𝑠 and 𝑃𝜌=3 = 3𝑃 ,
respectively, whereas, for the 𝜌 = 7 harmonic, 𝜔𝜌=7 = 7𝜔𝑠 and 𝑃𝜌=7 = 7𝑃 .

3.2.3 Flux Density Harmonics Produced by the Rotor

In the following, the distribution of the induced rotor current is calculated first. Then,
it is employed to obtain the rotor current sheets and, by applying Ampere’s Law, the rotor
MMF and the flux density.

Rotor Flux Linkage

All the flux density harmonics obtained in section §3.2.2: (3.15), (3.16), (3.48), (3.49)
and (3.18) can be written in a general form as

𝐵s

𝑥(𝜃, 𝑡) = 𝐴𝑥 cos (𝑃𝑥𝜃 − 𝜔𝑥𝑡+ 𝜑𝑥) (3.20)

where 𝑥 = {0, 𝑠𝑙𝑡, ℎ𝑠𝑒, ℎ𝑑𝑒, 𝜌} denotes the harmonic type and 𝐴𝑥, 𝑃𝑥, 𝜔𝑥 and 𝜑𝑥 are
the amplitude, pole pair number, angular frequency and delay angle of the harmonic,
respectively.

General expressions to calculate the pole pairs and frequency of each flux harmonic
produced by the stator can be obtained by combining (3.19) with (3.15), (3.16), (3.17),
(3.48), (3.49) and (3.18), or from Fig. 3.4:

𝑃𝑥 = 𝜌𝑠𝜈𝑃 ± ℎ𝑠𝑠𝑄𝑠 ± ℎ𝑠𝑟𝑄𝑟 (3.21)

𝜔𝑥 = ±ℎ𝑠𝑟𝑄𝑟𝜔𝑟 ± 𝜌𝑠𝑞𝜔𝑠. (3.22)

By applying the Faraday’s Law, the voltage induced in one rotor bar for each 𝐵s

𝑥 is
𝑒r𝑏(𝑡) = 𝐵s

𝑥(𝜃𝑏, 𝑡)𝐿𝑣𝑏, while 𝑣𝑏 denotes the linear speed between the bar and the field [107].
By combining this expression with (3.20), the induced voltage in one rotor bar is

𝑒r𝑏(𝑡) =̂︀𝑒r𝑏(𝜔𝑥 − 𝑃𝑥𝜔𝑟) cos
(︀
(𝑃𝑥𝜔𝑟 − 𝜔𝑥)𝑡+ 𝑃𝑥

2𝜋

𝑄𝑟

𝑏+ 𝜑𝑥
)︀

(3.23)

where 𝑏 = {0, 1..., 𝑄𝑟 − 1} is the bar index and ̂︀𝑒r𝑏 = 𝐴𝑥𝐿𝑟𝑟.

Rotor Current Distribution

If the equivalent rotor bar impedance is 𝑍𝑏∠𝜑𝑏 [107, 173], then, from (3.23), the current
induced in each bar is

𝑖r𝑏(𝑡) = ̂︀𝑖r𝑏(𝜔𝑥 − 𝑃𝑥𝜔𝑟) cos
(︀
(𝑃𝑥𝜔𝑟 − 𝜔𝑥)𝑡+ 𝑃𝑥

2𝜋

𝑄𝑟

𝑏+ 𝜑𝑥 − 𝜑𝑏
)︀

(3.24)

where ̂︀𝑖r𝑏 = ̂︀𝑒r𝑏/𝑍𝑏. This spatial distribution can be represented as current sheets by using
the Fourier series decomposition [107]:

𝐽 r

𝑏(𝑡) =
∞∑︁

𝑃𝑟=1

𝑖r𝑏(𝑡)
1

𝜋𝑃𝑟
sin

(︀
𝑃𝑟(𝜃 − 𝜔𝑟𝑡−

2𝜋

𝑄𝑟

𝑏)
)︀

(3.25)
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where 𝑃𝑟 is the pole pair number for each harmonic.
The total rotor current sheet is calculated as the sum of each bar spatial current

distribution

𝐽 r(𝑡) =

𝑄𝑟−1∑︁
𝑏=0

𝐽 r

𝑏 (3.26)

and, by using the roots of unity simplification [5] in this summation, it yields

𝐽 r

𝑃𝑟 = ̂︀𝐽 r

𝑃𝑟(𝜔𝑥 − 𝑃𝑥𝜔𝑟)[𝑏
+
𝑃𝑟

sin (𝑃𝑟𝜃 − 𝜔+
𝑃𝑟
𝑡+ 𝜑𝑃𝑟) − 𝑏−𝑃𝑟 sin (𝑃𝑟𝜃 − 𝜔−

𝑃𝑟
𝑡+ 𝜑𝑃𝑟)] (3.27)

where ̂︀𝐽 r

𝑃𝑟
= ̂︀𝑖r𝑏/(2𝜋𝑃𝑟), 𝜔+

𝑃𝑟
= 𝜔𝑥 + (𝑃𝑥 − 𝑃𝑟)𝜔𝑟, 𝜔

−
𝑃𝑟

= 𝜔𝑥 − (𝑃𝑟 + 𝑃𝑥)𝜔𝑟, 𝜑𝑃𝑟 = 𝜑𝑥 − 𝜑𝑏
and

𝑏+𝑃𝑟 =
{︁𝑄𝑟 if 𝑃𝑟=𝑃𝑥+ℎ𝑏𝑄𝑟

0 if 𝑃𝑟 ̸=𝑃𝑥+ℎ𝑏𝑄𝑟
𝑏−𝑃𝑟 =

{︁𝑄𝑟 if 𝑃𝑥=𝑃𝑟−ℎ𝑏𝑄𝑟

0 if 𝑃𝑥 ̸=𝑃𝑟−ℎ𝑏𝑄𝑟
(3.28)

where ℎ𝑏 = 0, 1, 2, 3, ....
By simplifying and rewriting (3.27) and (3.28), the rotor current sheets are assessed

as

𝐽 r

𝑃𝑟 = ̂︀𝐽 r

𝑃𝑟𝑄𝑟(𝜔𝑥 − 𝑃𝑥𝜔𝑟)[sin (𝑃+
𝑟 𝜃 − 𝜔+

𝑃𝑟
𝑡+ 𝜑𝑃𝑟) − sin (𝑃−

𝑟 𝜃 + 𝜔−
𝑃𝑟
𝑡− 𝜑𝑃𝑟)] (3.29)

where

𝑃+
𝑟 = 𝑃𝑥 + ℎ𝑏𝑄𝑟 𝜔+

𝑃𝑟
= 𝜔𝑥 + ℎ𝑏𝑄𝑟𝜔𝑟

𝑃−
𝑟 = 𝑃𝑥 − ℎ𝑏𝑄𝑟 𝜔−

𝑃𝑟
= 𝜔𝑥 − ℎ𝑏𝑄𝑟𝜔𝑟.

Flux Density Produced by the Rotor

By applying the Ampere’s Law to (3.29), the MMF generated by the rotor is

𝐹 𝑟
𝑃𝑟 = ̂︀𝐹 r

𝑃𝑟(𝜔𝑥 − 𝑃𝑥𝜔𝑟)[𝑏
+
𝑃𝑟

cos (𝑃𝑟𝜃 − 𝜔+
𝑃𝑟
𝑡+ 𝜑+

𝑃𝑟
) − 𝑏−𝑃𝑟 cos (𝑃𝑟𝜃 − 𝜔−

𝑃𝑟
𝑡+ 𝜑−

𝑃𝑟
)] (3.30)

where ̂︀𝐹 r

𝑃𝑟
= ̂︀𝐽 r

𝑃𝑟
𝑟𝑟/(2𝑃𝑟). Equation (3.30) shows that, apart from the fundamental com-

ponent of the rotor MMF with the same frequency 𝜔𝑥 and pole pairs 𝑃𝑥 of the airgap
flux that produces it, some sideband harmonics arise: ones with 𝑃𝑟 = 𝑃𝑥 + ℎ𝑏𝑄𝑟 and
𝜔𝑃𝑟 = 𝜔𝑥 + ℎ𝑏𝑄𝑟𝜔𝑟 and others with 𝑃𝑟 = 𝑃𝑥 − ℎ𝑏𝑄𝑟 and 𝜔𝑃𝑟 = 𝜔𝑥 − ℎ𝑏𝑄𝑟𝜔𝑟. This fact
is due to the discrete distribution of the current in the rotor bars. For example, if the
rotor MMF of 𝑀𝑛,𝑃

𝑄𝑠,𝑄𝑟
= 𝑀5,2

30,22 is induced only by the fundamental component of the flux
density produced by the stator 𝐵s

0,1,1, the first component of the rotor MMF, ℎ𝑏 = 0, has
the same pole pairs and frequency as 𝐵s

0,1,1. On the other hand, the first order rotor bar
harmonic, ℎ𝑏 = 1, produces two MMF components, one with 𝑃+

𝑟 = 24 and 𝜔+
𝑃𝑟

= 𝜔𝑠+22𝜔𝑟
and another one with 𝑃−

𝑟 = 20 and 𝜔−
𝑃𝑟

= 𝜔𝑠 − 22𝜔𝑟.
The flux density in the airgap produced by the rotor is obtained in a similar way as in

the stator case by applying the different permeance functions in (1.40), (1.34) and (1.36)
to

𝐵𝑟
𝑃𝑟 = 𝐹 𝑟

𝑃𝑟(Λ0 + Λ𝑠𝑙𝑡) +𝐵𝑟
𝜌,𝑃𝑟 (3.31)
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If

If

Saturation
harmonics

Stator and
 rotor slot
harmonics

Harmonics due to the
rotor current distribution

: Stator field harmonics

⇒
or ⇒

and

Figure 3.5: Rotor field 𝐵𝑟 harmonics classification in a healthy motor.

where 𝐵𝑟
𝜌,𝑃𝑟 is calculated following the same process described in section §3.2.2 for 𝐵𝑠

𝜌,𝑞,𝜈 .
The summary of pole pairs and frequencies of the rotor flux density harmonics due

to the different nonlinearities is shown in Fig. 3.5. The flux density harmonics due to
the rotor MMF are calculated by replacing the 𝑃𝑟 and 𝜔𝑃𝑟 values in each branch of the
diagram. For example, the pole pairs and frequencies of flux density harmonics due to
the interaction between Λ0 and the first order rotor bar harmonics of 𝑀𝑛,𝑃

𝑄𝑠,𝑄𝑟
= 𝑀5,2

30,22

are obtained by replacing the corresponding values of the pole pairs and frequencies for
the specific rotor MMF in the Λ0 branch of Fig. 3.5. Two flux harmonics arise, one with
𝑃0,𝑃𝑟 = 𝑃𝑟 = 2 + 22 and 𝜔0,Pr = 𝜔𝑃𝑟 = 𝜔𝑠 + 22𝜔𝑟 and another one with 𝑃0,𝑃𝑟 = 2− 22 and
𝜔0,𝑃𝑟 = 𝜔𝑠 − 22𝜔𝑟.

3.2.4 Total Flux Density Harmonics in the Airgap

Finally, the total airgap flux density is calculated as the addition of the stator (3.19)
and the rotor flux (3.31):

𝐵𝑇 =
∑︁
𝑞,𝜈

𝐵s

𝜈,𝑞 +
∑︁
𝑃𝑟

𝐵𝑟
𝑃𝑟 . (3.32)

3.3 Healthy Motor Current Signature

3.3.1 Airgap Flux Linked by the Stator

All the harmonic components of the addends in (3.32) are sinusoidal waveforms; con-
sequently, each component can be expressed in a general form as

𝐵𝑇
ℎ (𝜃, 𝑡) = ̂︀𝐵𝑇

ℎ cos (𝑃ℎ𝜃 − 𝜔ℎ𝑡+ 𝜑ℎ) (3.33)
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where ̂︀𝐵𝑇
ℎ , 𝑃ℎ, 𝜔ℎ and 𝜑ℎ are the amplitude, pole pair number, angular frequency and

delay angle of the specific harmonic, respectively.
From Figs. 3.4 and 3.5, a general equation to calculate the resulting frequency of

any flux density component caused by any combination of the studied harmonics can be
obtained:

𝜔ℎ = 𝑘𝑟𝑄𝑟𝜔𝑟 + 𝑘𝜌𝑞𝜔𝑠 (3.34)

where 𝑘𝑟 = ±𝜌𝑟(ℎ𝑠𝑟 ± ℎ𝑏) ± ℎ𝑟𝑟 and 𝑘𝜌 = 𝜌𝑠𝜌𝑟. The variable 𝑘𝑟 combines the effects of
the rotor slots, rotor bars and saturation on the stator and rotor field. For all harmonic
orders and their combinations, the values of 𝑘𝑟 and 𝑘𝜌 are integer numbers.

It is important to remark that according to the frequencies calculated through (3.34),
harmonics of the flux density can be divided into two groups: rotor-synchronized har-
monics and stator-synchronized harmonics. Harmonics whose frequency is related to the
rotor speed, and thus, which are subject to the slip, go in the first group. The second
group contains the harmonics whose frequency does not depend on the slip.

In the same manner as in (3.34), a general equation to calculate the pole pairs of each
flux density component is also obtained from the expressions in Figs. 3.4 and 3.5:

𝑃ℎ = 𝑘𝜌𝜈𝑃 + 𝑘𝑠𝑄𝑠 + 𝑘𝑟𝑄𝑟 (3.35)

where 𝑘𝑠 = ±𝜌𝑟ℎ𝑠𝑠 ± ℎ𝑟𝑠, and thus, 𝑘𝑠 ∈ Z.
Despite the fact that each 𝐵𝑇

ℎ field component is produced by a specific stator distri-
bution harmonic 𝜈, each component is likely to interact with all the stator distribution
harmonics. Therefore, the flux due to 𝐵𝑇

ℎ linked by phase 𝜂 of the stator winding is

𝜓s

𝜂,ℎ =
∞∑︁
𝜈′=1

𝜓s

𝜂,ℎ,𝜈′ (3.36)

where 𝜓s

𝜂,ℎ,𝜈′ is the flux linked by phase 𝜂 that is due to each of its winding distribution
harmonic 𝜈 ′, which does not need to be equal to the one that produces the flux, i.e., 𝜈.
It can be obtained as

𝜓s

𝜂,ℎ,𝜈′ =

∫︁ 𝜃+2𝜋

𝜃

𝐾s

𝜂,𝜈′

∫︁ 𝜃+𝜋/𝑃ℎ

𝜃

𝐵𝑇
ℎ (𝜃′, 𝑡)𝑑𝜃′𝑑𝜃. (3.37)

From (3.5), (3.33) and (3.37), the flux linked by phase 𝜂 of the stator winding is

𝜓s

𝜂,ℎ,𝜈′ =
{︁

0
− ̂︀𝜓s

𝜂,ℎ,𝜈′ sin (𝜔ℎ𝑡+𝜈′𝜂𝛼c+𝜑𝜓)

if 𝜈′𝑃 ̸=𝑃ℎ
if 𝜈′𝑃=𝑃ℎ

(3.38)

where ̂︀𝜓s

𝜂,ℎ,𝜈′ = 2𝜋𝐴𝑦 ̂︀𝑁 𝑠
𝜂,𝜈/𝑃ℎ and 𝜑𝜓 = 𝜑𝜈′−𝜑ℎ. Thus, one specific airgap field component

𝐵𝑇
ℎ only interacts with the spatial harmonic of the stator windings 𝜈 ′ if their pole pair

numbers are equal.
For example, if the pole pairs of the first order rotor bar harmonics of the 𝑀5,2

30,22

motor are 𝑃+
0,𝑃𝑟

= 24 and 𝑃−
0,𝑃𝑟

= −20, these rotor slot harmonics will be linked by the
stator windings if its winding function has the distribution harmonic 𝜈 ′ = 12 and 𝜈 ′ = 10,
respectively. Furthermore, the first order rotor bar harmonics of another induction motor
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𝑀5,2
50,44, 𝑃0,𝑃𝑟 = 46 and 𝑃0,𝑃𝑟 = −42, are linked if the stator winding function has a

distribution harmonic of order 𝜈 ′ = 23 or 𝜈 ′ = 21, respectively.
From (3.35) and (3.38), the equation that gives the distribution harmonic 𝜈 ′ that links

one specific flux density harmonic is

𝜈 ′𝑃 = 𝑃ℎ = 𝑘𝜌𝜈𝑃 + 𝑘𝑠𝑄𝑠 + 𝑘𝑟𝑄𝑟. (3.39)

Hence, the flux harmonics produced in the air gap by 𝜈, 𝑘𝜌, 𝑘𝑠 and 𝑘𝑟 are linked by the
stator only if there is a 𝜈 ′ that satisfies (3.39). This equation can be merged with (3.14)
to express the linking condition in (3.39) as a function of 𝑞:

𝜈 ′ =
𝑃ℎ
𝑃

= 𝑘𝑛+ 𝑘𝜌𝑞 +
𝑘𝑠
𝑃
𝑄𝑠 +

𝑘𝑟
𝑃
𝑄𝑟. (3.40)

For example, the pole pairs and frequencies of flux density harmonics due to the
interaction between Λ0 and the first order rotor bar harmonics of 𝑀𝑛,𝑃

𝑄𝑠,𝑄𝑟
= 𝑀5,2

30,22 are
obtained by replacing the corresponding values of the pole pairs and frequencies for the
specific rotor MMF in the Λ0 branch of Fig. 3.5: 𝑃0,Pr = 𝑃𝑟 = 𝑃 ± 22 and 𝜔0,Pr = 𝜔𝑃𝑟 =
𝜔𝑠 ± 22𝜔𝑟. The flux harmonics due to Λ0 and the first order rotor bar harmonics of
𝑀𝑛,𝑃

𝑄𝑠,𝑄𝑟
= 𝑀5,2

50,44 pole pairs and frequencies are 𝑃0,Pr = 𝑃𝑟 = 𝑃 ± 44 and 𝜔0,Pr = 𝜔𝑃𝑟 =
𝜔𝑠 ± 44𝜔𝑟.

As an example of application, this analysis can be used to evaluate if one squirrel cage
motor with 𝑄𝑟 = 22 and 𝑃 = 2 is suitable for sensorless applications. To measure the
motor speed through the PSH frequencies, it has to be studied if the harmonics produced
by the rotor bars and slots are linked by the stator windings and, thus, they produce
stator current harmonics.

3.3.2 Back-EMF Harmonics

The back EMF corresponding to the linked flux 𝜓s

𝜂,ℎ,𝜈′ is calculated using the Faraday-
Lenz equation and (3.38).

𝑒s𝜂,ℎ,𝜈′ = − 𝑑

𝑑𝑡
𝜓s

𝜂,ℎ,𝜈′ = ̂︀𝑒s𝜂,ℎ,𝜈′ cos (𝜔ℎ𝑡+ 𝜈 ′𝜂𝛼c + 𝜑𝜓) (3.41)

where ̂︀𝑒s𝜂,ℎ,𝜈′ = ̂︀𝜓s

𝜂,ℎ,𝜈′/𝜔ℎ.

3.3.3 Stator Induced Current Harmonics

It is shown in (3.2) that the back EMF can been decomposed into the voltage harmonics
𝑒𝑠𝑣𝜂 , which are synchronous with the voltage source that feeds the motor, and the non-
synchronous 𝑒𝑠𝑒𝑠𝜂 ones. Both components of the back EMF generate induced currents in
the stator. Given the equivalent circuits shown in Fig. 3.3 and (3.3), the induced current
is calculated as

𝑖𝑠𝜂 = 𝑖𝑠𝑣𝜂 − 𝑖𝑠𝑒𝑠𝜂 =
𝑣𝜂 − 𝑒𝑠𝑣𝜂

Z
−
𝑒𝑠𝑒𝑠𝜂
Z
. (3.42)

The first current components depicted in (3.42), denoted as 𝑖𝑠𝑣𝜂 , are current harmonics
synchronous with the voltage source. The second ones, 𝑖𝑠𝑒𝑠𝜂 , are non-synchronous current
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harmonics produced by the spatial harmonics of the motor, i.e., stator and rotor slots,
magnetic saturation, rotor bars or stator winding distribution. Therefore, the induced
current in the stator, which includes both current harmonic sets, can be characterized as

𝑖s𝜂,ℎ,𝜈′ = 𝑖𝑠𝑣𝜂 − 𝑖𝑠𝑒𝑠𝜂 = ̂︀𝑖s𝜂,ℎ,𝜈′ cos (𝜔ℎ𝑡−
𝑃ℎ
𝑃
𝜂𝛼c + 𝜑𝜓 − 𝜑𝜂,𝜈′) (3.43)

where ̂︀𝑖s𝜂,ℎ,𝜈′ is the current component amplitude.
3.3.4 Stator Current Harmonics Mapping

A parallelism between the induced current harmonics equation (3.43) produced by the
drive non-ideal conditions and the converter voltage harmonics equation (2.5), mapped
into spatial vectors in section §2.2.1, is identified. By applying the same procedure followed
in such section from (2.5) to (2.8), the spatial vector corresponding to each component
𝑖s𝜂,ℎ,𝜈′ is

i𝑠𝑝,ℎ,𝜈′ =
1√
𝑛

𝑛−1∑︁
𝜂=0

a𝜂𝑝𝑖𝑠𝜂,ℎ,𝜈′ = ̂︀𝑖𝑠+𝑝,ℎ,𝜈′𝑒𝚥̂(𝜔ℎ+𝜑+𝑝,ℎ) −̂︀𝑖𝑠−𝑝,ℎ,𝜈′𝑒𝚥̂(−𝜔ℎ+𝜑−𝑝,ℎ) (3.44)

where

̂︀𝑖𝑠+𝑝,ℎ,𝜈′ =
̂︀𝑖𝑠𝑝,ℎ,𝜈′
2
√
𝑛

𝑛−1∑︁
𝜂=0

𝑒𝚥̂(𝑝−
𝑃ℎ
𝑃

)𝜂 𝛼𝑐 (3.45)

̂︀𝑖𝑠−𝑝,ℎ,𝜈′ =
̂︀𝑖𝑠𝑝,ℎ,𝜈′
2
√
𝑛

𝑛−1∑︁
𝜂=0

𝑒𝚥̂(𝑝+
𝑃ℎ
𝑃

)𝜂 𝛼𝑐 .

By applying the property of the Roots of Unity theory shown in (2.11), the expression in
(3.45) can be simplified as

̂︀𝑖𝑠+𝑝,ℎ,𝜈′ =
{︁̂︀𝑖s

𝜂,ℎ,𝜈′
√
𝑛

0

if 0≤𝜎≤𝑛
2

or −𝑛<𝜎≤−𝑛
2

otherwise

̂︀𝑖𝑠−𝑝,ℎ,𝜈′ =
{︁̂︀𝑖s

𝜂,ℎ,𝜈′
√
𝑛

0

if
𝑛
2
≤𝜎<𝑛 or −𝑛

2
≤𝜎≤0

otherwise

where 𝜎 = mod(𝑃ℎ/𝑃, 𝑛). Hence, the space vector i𝑠𝑝,ℎ,𝜈′ is different from zero, i.e., it
maps in the subspace 𝑝 only if

𝑝 = min {𝜎, 𝑛− 𝜎}. (3.46)

If 𝜎 = 0 or 𝜎 = 𝑛/2, the space vector i𝑠𝑝,ℎ,𝜈′ maps into a homopolar axis, producing a
pulsating vector that does not rotate. If 𝜎 ̸= 0 and 𝜎 ̸= 𝑛/2, the spatial vector of the
current component rotates with a speed

𝜔𝑝,ℎ =
{︁
𝜔ℎ
−𝜔ℎ

if 0<𝜎<𝑛/2 or −𝑛<𝜎≤−𝑛
2

if 𝑛/2<𝜎<𝑛 or −𝑛
2
≤𝜎≤0. (3.47)
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Table 3.1

Example of Healthy Motor Current Harmonic VSD Characterization

p Subspace

1

0

0 1 1 α – β
1 12 2 x – y
-1 -10 0
2 23 2 x – y
-2 -21 1 α – β

…

1

0 16 1 α – β
1 27 2 x – y
-1 5 0

…
2 0 31 1 α – β

…

3
0

0 3 2 x – y
1 14 1 α – β
-1 -8 2 x – y

…

5
0 0 5 0

…

7
0 0 7 2 x – y

…
…

Motor characteristics: n=5, P=2, Qr=22 and Qs=30

qkρ ks /P kr /P ωh Ph/P ωp,h

ωs ωs

22ωr+ωs 22ωr+ωs

-22ωr+ωs h+

44ωr+ωs -44ωr-ωs

-44ωr+ωs 44ωr-ωs

ωs ωs

22ωr+ωs 22ωr+ωs

-22ωr+ωs h+

ωs ωs

3ωs -3ωs

22ωr+3ωs -22ωr-3ωs

-22ωr+3ωs -22ωr+3ωs

5ωs h+

7ωs 7ωs

In the case the saturation and slot harmonics are neglected, equation (3.46) is equiv-
alent to the one proposed in [42] that associates sets of stator and rotor distribution
harmonics with the multiphase motor subspaces. This fact, proves that the winding dis-
tribution harmonic mapping proposed in [42] can be extended to cover non-uniform airgap
and saturation harmonics by applying (3.40).

Table 3.1, elaborated with (3.34), (3.46) and (3.47), shows some examples of the
frequency, the mapping subspace and the SVR speed of the current harmonics induced
by the studied non-ideal characteristics of a five-phase squirrel cage motor with 𝑃 = 2,
𝑄𝑟 = 22 and 𝑄𝑠 = 30. For example, in the first row, Table 3.1 represents the current
component characterized by 𝑞𝑘𝜌 = 1, 𝑘𝑠/𝑃 = 0 and 𝑘𝑟/𝑃 = 0, i.e., the fundamental
component of the current. The table shows that this current component maps into the
𝛼-𝛽 plane with a frequency 𝜔𝑠 as it is already known. The second and third rows of
Table 3.1 address the PSH of this motor (𝑞𝑘𝜌 = 1, 𝑘𝑠/𝑃 = 0 and 𝑘𝑟/𝑃 = ±1). That
is, those rows show the frequency and the subspace where they map, calculated by using
(3.34), (3.46) and (3.47).

Comparing the spatial vector equations (2.8), (2.9) and (2.10) of the voltage time
harmonics mapped in section §2.2.1 with the spatial vector equations of the induced
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currents (3.44) and (3.45), a parallelism can be established that permits to conclude
that the time harmonic mapping diagram presented in section §2.2.1 can be adapted for
mapping the induced stator current harmonics caused by the spatial harmonics. The steps
to draw the mapping diagram for the induced currents due to the spatial harmonics are:

1. Draw a horizontal line that represents the real axis, as in the mapping diagram of
section §2.2.1. The surface over this line represents the 𝜔𝑝,ℎ = 𝜔ℎ area and that
under it represents the 𝜔𝑝,ℎ = −𝜔ℎ area.

2. Draw an 𝑛-sided regular polygon with the center and one vertex on the real axis.
This vertex is the reference vertex.

3. Draw vertical lines crossing the vertices of the regular polygon that are symmetrical
with respect to the real axis and number them from the closest to the reference
vertex to the farthest one. These lines represent the subspaces 𝛼𝑝-𝛽𝑝.

4. The subspace and SVR direction of a specific induced current harmonic is obtained
by numbering the vertices of the regular polygon counterclockwise from zero to
𝜈 ′ = 𝑃ℎ/𝑃 starting at the reference vertex.

5. Remove the 𝑃ℎ/𝑃 values of the equivalent pole pairs of the flux density for which
the motor does not have its associated stator distribution harmonic 𝜈 ′ = 𝑃ℎ/𝑃 , i.e.,
they are not going to be linked by the stator.

Examples of the mapping diagram for the induced currents in a 𝑛 = 5 and a 𝑛 = 6
healthy induction motor are shown in Fig. 3.6 and Fig. 3.7, respectively. It is interesting
to remark that in the healthy integral slot 6-phase machine the induced current harmonics
due to the non-ideal conditions do not map into the 𝑥-𝑦 plane. This fact is important
because, as it has been mentioned, this plane is a low impedance one and low order
back-EMF harmonics can give rise to high current harmonics and produce losses.

3.4 Induced Current Harmonics due to the Rotor Ec-

centricity

The spatial vector equation (3.44) shows also that the origin of the stator current
harmonic ℎ can be identified through the subspace 𝑝 where the spatial vector of such
harmonic maps and its rotating speed 𝜔𝑝,ℎ. The use of these two parameters to identify
the origin of each stator current harmonic helps in case that different nonlinearities induce
current harmonics that coincide in one of the identification parameters (e.g., two different
origins that produce harmonics with the same frequency 𝜔ℎ [126]).

3.4.1 Harmonics Produced by Rotor Static, Dynamic and Mixed

Eccentricities

In case the motor has rotor eccentricities, additional sets of field harmonics arise. From
(1.34) and (3.12), the flux density harmonics due to the static eccentricity are obtained
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Figure 3.6: Example of the induced current mapping diagram for a five-phase healthy
induction motor.
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(𝜈′ = 1, 2, 3, 4, 5, ...)

Figure 3.7: Example of the induced current mapping diagram for a six-phase healthy
induction motor.

as

𝐵s

𝑠𝑒,𝜈,𝑞 = 𝐹 s

𝜈,𝑞Λ𝑠𝑒 = ̂︀𝐵s

𝑠𝑒,𝜈,𝑞[cos (𝑃+
𝑠𝑒𝜃 − 𝜔𝑠𝑒𝑡+ 𝜑+

𝑞,𝜈) + cos (𝑃−
𝑠𝑒𝜃 − 𝜔𝑠𝑒𝑡+ 𝜑+

𝑞,𝜈)] (3.48)

where ̂︀𝐵s

𝑠𝑒,𝜈,𝑞 = ̂︀𝐵s

0,𝜈,𝑞
̂︀Λℎ𝑠𝑒 and

𝑃+
𝑠𝑒 = 𝜈𝑃 + ℎ𝑠𝑠𝑒 𝜔𝑠𝑒 = 𝑞𝜔𝑠

𝑃−
𝑠𝑒 = 𝜈𝑃 − ℎ𝑠𝑠𝑒

This equation shows that, for each harmonic of the static eccentricity ℎ𝑠𝑒, each component
of the stator MMF produces two flux density waveforms in the airgap, one with 𝑃+

𝑠𝑒
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Figure 3.8: Stator field 𝐵s harmonics classification taking into account static and dynamic
eccentricities.

and the other with 𝑃−
𝑠𝑒 equivalent pole pairs. For example, if the static eccentricity

harmonic ℎ𝑠𝑠𝑒 = 4 arises in 𝑀𝑛,𝑃
𝑄𝑠,𝑄𝑟

= 𝑀5,2
30,22, the flux produced by the interaction between

the fundamental component of the MMF, {𝜈, 𝑞} = {1, 1}, and the static eccentricity
permeance Λ𝑠𝑒 has two components, one with 𝑃+

𝑠𝑒 = 6 and another one with 𝑃−
𝑠𝑒 = −2,

both with a frequency 𝜔𝑠𝑒 = 𝜔𝑠.
Analogously, from (1.36) and (3.12), the flux density harmonics due to the dynamic

eccentricity are

𝐵s

𝑑𝑒,𝜈,𝑞 = 𝐹 s

𝜈,𝑞Λ𝑑𝑒 = ̂︀𝐵s

𝑑𝑒,𝜈,𝑞[cos (𝑃+
𝑑𝑒𝜃 − 𝜔+

𝑑𝑒𝑡+ 𝜑+
𝑑𝑒) + cos (𝑃−

𝑑𝑒𝜃 − 𝜔−
𝑑𝑒𝑡+ 𝜑+

𝑑𝑒)] (3.49)

where ̂︀𝐵s

𝑑𝑒,𝜈,𝑞 = ̂︀𝐵s

0,𝜈,𝑞
̂︀Λℎ𝑑𝑒 and

𝑃+
𝑑𝑒 = 𝜈𝑃 + ℎ𝑠𝑑𝑒 𝜔+

𝑑𝑒 = 𝑞𝜔𝑠 + ℎ𝑠𝑑𝑒𝜔𝑟

𝑃−
𝑑𝑒 = 𝜈𝑃 − ℎ𝑠𝑑𝑒 𝜔−

𝑑𝑒 = 𝑞𝜔𝑠 − ℎ𝑠𝑑𝑒𝜔𝑟.

The diagrams that summarize the pole pairs and frequencies of the stator (i.e., Fig. 3.4)
and rotor (i.e., Fig. 3.5) flux harmonics are extended to include the static and dynamic
eccentricities in Fig. 3.8 and Fig. 3.9.

Taking into consideration the flux density components produced by the static (3.48)
and dynamic (3.49) eccentricities, the equation (3.34) that defines the rotation speed of



3.4. INDUCED HARMONICS DUE TO MOTOR ECCENTRICITIES 93

If

If

Saturation
harmonics

Stator and
 rotor slot
harmonics

Static eccentricity
harmonics

Dynamic eccentricity
harmonics

Harmonics due to the
rotor current distribution

: Stator field harmonics

⇒
or ⇒

and

Figure 3.9: Rotor field 𝐵𝑟 harmonics classification taking into account static and dynamic
eccentricities.

the flux density harmonics in the airap becomes

𝜔ℎ = (𝑘𝑟𝑄𝑟 + 𝑘𝑑𝑒)𝜔𝑟 + 𝑘𝜌𝑞𝜔𝑠, (3.50)

where 𝑘𝑑𝑒 = ±𝜌𝑟ℎ𝑠𝑑𝑒 ± ℎ𝑟𝑑𝑒 is an integer number, and the equation (3.35) that defines the
equivalent pole pairs of each flux density component becomes

𝑃ℎ = 𝑘𝜌𝜈𝑃 + 𝑘𝑠𝑄𝑠 + 𝑘𝑟𝑄𝑟 + 𝑘𝑑𝑒 + 𝑘𝑠𝑒 (3.51)

where 𝑘𝑠𝑒 = ±𝜌𝑟ℎ𝑠𝑠𝑒 ± ℎ𝑟𝑠𝑒 is an integer number.
Equations (3.50) and (3.51) do not depend on the number of phases of the motor

and agree with the one proposed in [116] for three-phase motors. The difference between
the 𝑛-phase and the three-phase equations is the relation between the orders of the time
harmonics 𝑞 and the stator distribution harmonic 𝜈 that produces MMF in the airgap,
which is defined by (3.14). Hence, from (3.14), (3.38) and (3.51), the flux harmonics
produced in the air gap by 𝑞, 𝑘𝜌, 𝑘𝑠, 𝑘𝑟, 𝑘𝑠𝑒 and 𝑘𝑑𝑒 in the general 𝑛-phase case are linked
by the stator 𝜈 ′ winding distribution harmonic

𝜈 ′ =
𝑃ℎ
𝑃

= 𝑘𝑛+ 𝑘𝜌𝑞 +
𝑘𝑠
𝑃
𝑄𝑠 +

𝑘𝑟
𝑃
𝑄𝑟 +

𝑘𝑑𝑒
𝑃

+
𝑘𝑠𝑒
𝑃
. (3.52)
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The equations (3.50) and (3.52) show that the static eccentricity does not cause flux
components with a different rotating speed of the flux density and, thus, the stator in-
duced current harmonic that the static eccentricity produces have the same frequencies
as the ones already present in the motor; however, the flux density harmonics the static
eccentricity produces have different pole pairs than the current harmonics that the healthy
motor has. Therefore, the induced stator current harmonics produced by the static ec-
centricity map into different planes and have different SVR directions than the harmonics
caused by other non-ideal characteristics of the motor, but their frequencies are equal to
the ones of other current harmonics present in the healthy motor model. The static eccen-
tricities do not produce harmonics with a specific frequency that can be used as the fault
detection symptom. Thus, MCSA methods based on monitoring harmonics at specific
frequencies of the stator current need to use an indirect method to detect static eccentric-
ities. On the other hand, the flux density harmonics produced by dynamic eccentricity
have particular rotation speeds and pole pairs.

3.4.2 Three-Phase Classical Eccentricity Detection Methods

In section §1.2.2 the classical symptoms used to detect rotor eccentricity by means of
MCSA are introduced. Those symptoms, shown in (1.46) and (1.47), were initially defined
for eccentricity detection in three-phase integral slot motors [116, 134]. The eccentricity
symptoms of a three-phase motor with integral slot, analyzed by using the VSD are shown
in Table 3.2.

The frequencies of the sideband eccentricity symptoms described by (1.47) are the
ones of the current harmonics produced by the dynamic eccentricity. Therefore, the
MCSA method to detect eccentricities based on these sideband symptoms cannot identify
standalone static eccentricity. In the case of only dynamic eccentricity appear in the
motor, Table 3.2 shows that, for 𝑘𝑠𝑒 = 0, only some sidebands among the ones described
by (1.47) appear in the stator current. Those are the reasons why the symptoms at
the frequencies shown in (1.47) are commonly used to detect only mixed eccentricities in
three-phase integral slot motors.

On the other hand, the frequencies of the eccentricity symptoms described by (1.46)
are a combination of the ones of the rotor bar and rotor slots and the ones due to dynamic
eccentricity harmonics. These symptoms can be used to detect pure-static eccentricities
by using an indirect method based on the monitoring of the current harmonics due to the
rotor bars and slots [116, 126, 129, 174]. However, as it is mentioned in section §1.2.2,
this MCSA technique is proved to detect pure-static eccentricities in three-phase motors
only if the 𝑃 and 𝑄𝑟 values satisfy (1.48). This is due to the fact that, in a three-phase
machine with any of these values of 𝑄𝑟, the rotor bar and slot harmonics produce flux
components with 𝑘𝑃𝑃 pole pairs, where 𝑘𝑃 can be a multiple of 3 or an even number
[126]. In a three-phase motor, the induced stator currents produced by flux components
with 3𝑘𝑃 pole pairs, if present, map onto the homopolar axis. Hence, if the machine
does not have even 𝜈 ′ order distribution harmonics and there is not neutral connection
between the motor and the converter, they do not produce induced current harmonics in
the stator. When the machine is affected by a static eccentricity, the combination of the
rotor bar, rotor slots and the eccentricity produces flux components with (𝑘𝑃 ±𝑘𝑠𝑒)𝑃 pole
pairs, which map into a subspace different from the homopolar component and they can
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Table 3.2

Static and Dynamic Symptoms in a Three-Phase Integral Slot Motor

𝑘𝑠𝑒
𝑃

𝑘𝑑𝑒
𝑃

𝜈 ′ = 1 + 𝑘𝑑𝑒
𝑃

+ 𝑘𝑠𝑒
𝑃

Linked by

the stator
Subspace 𝜔ℎ = 𝜔𝑠(1 + 𝑘𝑑𝑒

1−𝑠
𝑃

)

-1

-4 -4 no -

-3 -3 yes h

-2 -2 no -

-1 -1 yes 𝛼− 𝛽 𝜔𝑠(𝑠)

0 0 no -

1 1 yes 𝛼− 𝛽 𝜔𝑠(2 − 𝑠)

2 2 no -

3 3 yes h

4 4 no -

0

-4 -3 yes h

-3 -2 no -

-2 -1 yes 𝛼− 𝛽 𝜔𝑠(2𝑠− 1)

-1 0 no -

0 1 yes 𝛼− 𝛽 𝜔𝑠

1 2 no -

2 3 yes h

3 4 no -

4 5 yes 𝛼− 𝛽 𝜔𝑠(5 − 4𝑠)

1

-4 -2 no -

-3 -1 yes 𝛼− 𝛽 𝜔𝑠(3𝑠− 2)

-2 0 no -

-1 1 yes 𝛼− 𝛽 𝜔𝑠(𝑠)

0 2 no -

1 3 yes h

2 4 no -

3 5 yes 𝛼− 𝛽 𝜔𝑠(4 − 3𝑠)

4 6 yes h
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be detected in the current signature.
In the case of multiphase motors, these techniques have been tested in a dual three-

phase induction motor with isolated neutral points, integral slots and specific values of
𝑄𝑠 and 𝑄𝑟, [122]. In this type of motor, the induced stator currents produced by flux
components with 3𝑘𝑃 pole pairs map into the positive or negative homopolar axis, and, in
absence of neutral connections, these currents do not flow. Thus, in this case, (1.46) can
be used to detect pure static rotor eccentricity. In [158] a reference frame transformation
is proposed for detecting mixed eccentricity in multiphase motors by using the sideband
frequencies defined by (1.47), but this method cannot be used to detect pure-static ec-
centricity.

3.4.3 Extension of the Classical Static Eccentricity Detection Method

for 𝑛-Phase Drives

Equation (1.48) can be extended to the general 𝑛-phase case by calculating the relation
between the 𝑃 and 𝑄𝑟 values that makes the rotor bar and slot harmonics map onto the
homopolar component, or in case of an integral slot motor, that produces even order pole
pairs. The extension of the equation that describes the 𝑃 and 𝑄𝑟 combinations that allow
to apply the static eccentricity Rotor bar and slot harmonics MCSA method to a 𝑛-phase
motor is

𝑄𝑟 = 𝑃 (𝑛𝑘 ± 1) (3.53)

where 𝑘 = 0, 1, 2, 3, ...
For 𝑛 values that are not a prime number (e.g., 𝑛 = 6, 8, 9, ...), there are more than one

homopolar component. In such cases, these homopolar components do not allow current
flow in absence of neutral connection. Then, (3.53) becomes

𝑄𝑟 = 𝑃 (𝑛′𝑘 ± 1) (3.54)

where 𝑛′ is the phase number of the smallest winding subset that composes the stator
winding. For example, in a six-phase motor with isolated neutral points 𝑛′ = 3, as it has
been seen in the dual three-phase induction motor case at the end of section §3.4.2, and
in a nine-phase motor with isolated neutral points 𝑛′ = 3.

3.4.4 VSD MCSA Eccentricity Detection Method

VSD MCSA Static Eccentricity Symptoms

For the cases the classical static eccentricity detection MCSA system based on the ro-
tor slot and bar harmonics cannot be applied, another fault detection method should be
used. To detect static eccentricity in the three-phase motors where the classical method
is not valid, a method based on the analysis of the current spectrum of the zero sequence
component is proposed in [154]. In a similar way, a method to detect pure static ec-
centricity in three-phase motors based on the analysis of the negative sequence of the
fundamental current is proposed in [156]. Both methods are based on the fact that the
analysis of the stator current harmonics of a three-phase motor by means of sequence de-
composition provides more information than the current harmonic analysis in one phase.



3.4. INDUCED HARMONICS DUE TO MOTOR ECCENTRICITIES 97

In multiphase motors, the VSD of the stator current provides the information of the se-
quences in each subspace of the motor. Therefore, by studying how the static eccentricity
affects the VSD of the current signature of healthy multiphase motors, a MCSA method
to detect static eccentricities in multiphase motors similar to the ones shown in [154] and
[156] for three-phase motors can be proposed.

Equations (3.50) and (3.52) show that the flux components that the static eccentricity
produces have the same frequencies and different pole pairs as the ones already present
in the motor, such as the ones produced by the slots, the current sheets or the magnetic
saturation. Hence, the induced current harmonics due to the static eccentricity, despite
having the same frequencies as the current harmonics already present in the healthy
motor, map into different subspaces.

From all the induced current harmonics that can be produced by the combination of
the motor flux density components and the static eccentricity harmonics, the best option
to use as the fault symptom is the current harmonic produced by the combination of
the fundamental component of the flux and the airgap eccentricity. The main reason is
because in normal operation of the motor, the fundamental component of the flux is the
one with the highest amplitude. Thus, the amplitude of the induced current harmonic
produced by the combination of this flux component and the static eccentricity should be
bigger than the ones produced by the other flux components.

From (3.51), the equivalent pole pairs of the flux harmonic produced by the combina-
tion of the fundamental flux and the static eccentricity are

𝑃𝑠𝑒 = 𝑃 + 𝑘𝑠𝑒. (3.55)

The stator winding distribution harmonics that links them are

𝜈 ′𝑠𝑒 =
𝑃ℎ
𝑃

= 1 +
𝑘𝑠𝑒
𝑃

(3.56)

and their rotation speed, calculated by using (3.50), is 𝜔𝑠. The key symptom of the
static eccentricity is the induced current components produced by the stator winding
distribution harmonics 𝜈 ′𝑠𝑒. Among all the possible options, the value of 𝜈 ′𝑠𝑒 is chosen
to be the stator distribution harmonic with the highest amplitude, which produces an
induced current that maps into a different subspace (or at least with a different SVR
direction) than the fundamental current. If the induced current produced by 𝜈 ′𝑠𝑒 maps
into a low impedance plane (i.e., a 𝑥-𝑦 plane), the amplitude of such static eccentricity
symptom become larger than if the same harmonic maps into a high impedance (𝛼-𝛽)
plane.

The subspace where the static eccentricity symptom maps can be calculated by replac-
ing 𝜎 = mod(𝜈 ′𝑠𝑒, 𝑛) into (3.46) or searching 𝜈 ′𝑠𝑒 in the motor mapping diagram extended
to spatial harmonics. The SVR speed of the static eccentricity symptom is calculated
by replacing 𝜎 = mod(𝜈 ′𝑠𝑒, 𝑛) and 𝜔ℎ = 𝜔𝑠 into (3.47). For example, if the chosen stator
distribution harmonic to monitor the static eccentricity symptom is 𝜈 ′𝑠𝑒 = 1 + 𝑘𝑠𝑒

𝑃
= 3

(which is going to be the most common case), the induced current maps into the 𝑥-𝑦
plane, and its SVR speed is −𝜔𝑠.

The proposed method, based on the analysis of the VSD of the stator currents, can be
used to detect static eccentricities in multiphase induction motors. Its advantage over the
classical static eccentricity MCSA method, based on the rotor bar and slot harmonics, is
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that the VSDMCSAmethod does not depend on the𝑄𝑟 motor parameter. Compared with
the three-phase method shown in [154], the VSD MCSA method does not require a neutral
connection between the motor and the converter. Multiphase motors, in comparison with
three-phase ones, also present advantages due to the higher number of degrees of freedom
and the low impedance subspaces. The number of subspaces into which a multiphase
motor model can be decomposed depends on the number of phases 𝑛, the higher the
value of 𝑛, the larger the number of subspaces, and hence, the possibility of harmonic
overlapping is reduced and the detection of the eccentricity symptoms is easier. One of
the advantages of the proposed VSDMCSA method when compared with the one shown in
[156] arises when the static eccentricity symptoms map into a different subspace than the
fundamental current. In this case, due to the fact that the current control in multiphase
drives are normally designed to be independent in each subspace, the fundamental current
control loop does not affect the symptom amplitude. In addition, if the static eccentricity
symptom maps into a low impedance plane, its amplitude is higher and low eccentricity
amplitudes can be detected.

VSD MCSA Dynamic Eccentricity Symptoms

The stator winding distribution harmonics that links the induced current harmonics
produced by the combination of the fundamental flux and the dynamic eccentricity is

𝜈 ′𝑑𝑒 =
𝑃ℎ
𝑃

= 1 +
𝑘𝑑𝑒
𝑃
. (3.57)

and its frequency is

𝜔𝑑𝑒 = 𝑘𝑑𝑒𝜔𝑟 + 𝜔𝑠 = [𝑘𝑑𝑒
1 − 𝑠

𝑃
+ 1]𝜔𝑠. (3.58)

The subspace where the static eccentricity symptom maps can be calculated by replacing
𝜎 = mod(𝜈 ′𝑑𝑒, 𝑛) into (3.46). The SVR speed of the dynamic eccentricity symptom is
calculated by replacing 𝜎 = mod(𝜈 ′𝑑𝑒, 𝑛) and 𝜔ℎ = 𝜔𝑑𝑒 into (3.47).

The SVR speed of the induced current due to the dynamic and static frequencies are
different. Hence, the same stator winding distribution harmonic for detecting the static
eccentricity is used to detect the dynamic one. For example, in the previous case, where
𝜈 ′𝑠𝑒 = 3, the dynamic eccentricity symptom maps into the 𝑥-𝑦 plane (𝜈 ′𝑑𝑒 = 3), and its
SVR speed is −[2(1 − 𝑠) + 1]𝜔𝑠 (𝑘𝑑𝑒 = 4) or [−4(1 − 𝑠) + 1]𝜔𝑠 (𝑘𝑑𝑒 = −8).

The advantages of this method, when compared with the classical ones based on (1.47)
and (1.46), are the ones related to the multiphase nature of the motor already mentioned
in the static eccentricity case, the higher number of degrees of freedom, which reduces
harmonic overlapping, and the low impedance subspaces.

Proposed VSD MCSA Eccentricity Detection Method

The Proposed VSD MCSA Eccentricity Detection Method requires the following steps.

First Step: Apply the discrete Fourier transformation (DFT) to the stator winding
function to obtain the order and amplitude of its harmonics 𝜈 [10, 100], and assess into
which subspace and with which SVR direction map the induced currents linked to each of
them by using (3.46). Then, choose the stator winding distribution harmonic 𝜈 with the
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highest amplitude that maps into a different subspace than the fundamental current (or
at least with a different SVR direction). This stator distribution harmonic is the one used
to sense the static and dynamic eccentricities 𝜈 ′𝑠𝑒 and 𝜈

′
𝑑𝑒. Then, calculate the subspace

and the VSD speed of the static and dynamic eccentricity symptoms by following sections
§3.4.4 and §3.4.4, respectively.

Second Step: Measure the healthy motor stator currents with the motor spinning at
steady state with different values of the mechanical load, i.e., at different slip values.
Apply the VSD to the measured stator currents and then, the DFT, to obtain the complex
spectrum of each subspace. This procedure gives the subspace and the SVR speed of every
current harmonic at various slips in the healthy motor. Then, measure in the healthy
motor the amplitude of the current harmonics that map into the same subspace and with
the same VSD speed of the static and dynamic eccentricity symptoms. This is needed
because, even in healthy motors, non-zero values of static and dynamic eccentricity can
be found. There are also other system non-ideal characteristics that can lead to current
harmonics similar to the static eccentricity symptoms, like non-balanced stator phase
impedances.

Third Step: The static and dynamic eccentricities are detected by measuring the am-
plitude of the current harmonics that map into the subspace and with the VSD speed
predicted for their symptoms and comparing them to the ones measured in the healthy
motor case.

By testing the evolution of each symptom amplitude with the increase of its corre-
sponding eccentricity, a threshold value for each symptom amplitude can be set. When
one of the symptoms amplitude surpass its chosen threshold value, it indicates that the
motor needs maintenance.
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Figure 3.10: Experimental setup.

3.5 Experimental Evaluation

3.5.1 Experimental Setup

The proposed method is validated by using two different five-phase motors. The
elements of the experimental setup are shown in Fig. 3.10. Two three-phase voltage
source inverter (VSI) Semikron Semistack SKS 35F B6U+E1CIF+B6CI21V modules are
used to build a six-phase VSI, but just five of the six legs are employed. The dc-link
voltage is 300 V. The converter control is implemented in a dSPACE DS1006 platform,
based on an AMD Operton processor with the DS5001 pulse width modulation (PWM)
board. The switching frequency is set to 5 kHz; this frequency is high enough not to
affect the studied current components. The voltages are measured using LEM LV 25-P
sensors with a bandwidth of 25 kHz and the currents are measured using LEM LA 55-P
sensors with a bandwidth of 200 kHz. The analog-to-digital converter DS2004 board with
16 parallel channels is employed to capture all the measured signals at a sample rate of
100 kHz. The FFTs shown in this chapter are obtained offline by using the Matlab ’fft’
function in the complex mode with measures of 10240 samples and, thus, a resolution of
0.98 Hz.

The first motor to be tested is𝑀5,2
30,22. It is a 0.75-kW fractional-slot five-phase squirrel

cage motor and it has 𝑃 = 2, 𝑄𝑠 = 30 and 𝑄𝑟 = 22. The stator distribution harmonic
spectrum is obtained by applying the DFT to the corresponding winding function of all
the phases and it is shown in Fig. 3.11b. The classification of the possible values of 𝑃ℎ/𝑃
and their induced stator currents mapping are shown in Table 3.3. The second motor,
𝑀5,2

50,44, is also a fractional-slot four-pole five-phase induction machine, but it has 𝑄𝑠 = 50
and 𝑄𝑟 = 44. Its nominal power is 1.5 kW and its stator winding distribution harmonic
content is depicted in Fig. 3.12b. The classification of the possible values of 𝑃ℎ/𝑃 and
their induced stator currents mapping is shown in Table 3.4.
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Figure 3.11: Stator winding distribution analysis of 𝑀5,2
30,22.

Table 3.3

Classification of the Possible Values of 𝑃ℎ/𝑃 and Their Induced Stator

Currents Mapping in 𝑀5,2
30,22

𝜔𝑆,ℎ = 𝜔ℎ 𝜔𝑆,ℎ = −𝜔ℎ
𝛼-𝛽 ...,-14, -4, -9, 1, 6, 11, 16, ... ...,-11, -6, -1, 4, 9, 14, 19,...

𝑥-𝑦 ...,-13, -8, -3, 2, 7, 12, 17, ... ...,-12, -7, -2, 3, 8, 13, 18,...

ℎ+ ..., -10, -5, 5, 10, ...

Table 3.4

Classification of the Possible Values of 𝑃ℎ/𝑃 and Their Induced Stator

Currents Mapping in 𝑀5,2
50,44

𝜔𝑆,ℎ = 𝜔ℎ 𝜔𝑆,ℎ = −𝜔ℎ
𝛼-𝛽 ...,-24, -9, 1, 26,... ..., -26, -1, 9, 24,...

𝑥-𝑦 ..., -18, -3, 7, 22,... ..., -22, -7, 3, 18, 28,...

ℎ+ ..., -20, -5, 5, 20, 30, ...
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Figure 3.12: Stator winding distribution analysis of 𝑀5,2
50,44.

3.5.2 VSD of the Healthy Motor Current Spectrum

Both motors are controlled in open loop with a fundamental frequency 𝑓𝑠 = 50 Hz
and are tested with three different mechanical loads. The complex spectrum of the stator
current of 𝑀5,2

30,22, decomposed into the two motor planes, is shown in Fig. 3.13, and the
spectrum of the 𝑀5,2

50,44 stator current is shown in Fig. 3.14. The frequencies and planes
of the harmonics identified in Figs. 3.13 and 3.14 are reflected in their respective columns
in Tables 3.5 and 3.6.

The first harmonic to be identified in the VSD of stator current spectrum is the
fundamental component of the current, i.e., 𝑘𝜌𝑞 = 1 and 𝑘𝑠 = 𝑘𝑟 = 𝑘𝑠𝑒 = 𝑘𝑑𝑒 = 0 in
(3.50) and (3.52). The rotation speed of the flux density component that it produces is
𝜔𝑠 = 50 Hz and its pole pairs are 𝑃 = 2. By applying the mapping equation (3.46), or
by using the mapping diagram shown in Fig. 3.6b, the induced current component maps
into the 𝛼-𝛽 plane. Equation (3.47) shows that its SVR speed is 50 Hz in both motors.
This current component is labeled as #1 in Figs. 3.13 and 3.14 and in Tables 3.5 and 3.6.

The second harmonic to be identified in Figs. 3.13 and 3.14 is the 3rd order time (𝑞 = 3,
𝑘𝜌 = 1) or saturation harmonic (𝑞 = 1, 𝑘𝜌 = 3), i.e., 𝑘𝜌𝑞 = 3 and 𝑘𝑠 = 𝑘𝑟 = 𝑘𝑠𝑒 = 𝑘𝑑𝑒 = 0.
The mapping diagram Fig. 3.6b shows that it maps into the 𝑥-𝑦 plane and its SVR speed
is −150 Hz in both motors. This current harmonic is labeled as #3 in Figs. 3.13 and 3.14
and in Tables 3.5 and 3.6.

Following the same procedure, the plane and SVR speed of the 7th order time or
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Figure 3.13: 𝑀5,2
30,22 stator current complex spectrum, in the two motor planes.

Table 3.5

𝑀5,2
30,22 Stator Current Harmonics Identification

Sync.qkρ k s kr k se kde

Stator1 0 0 0

Stator3 0 0 0

Stator7 0 0 0

Stator1 0 4 0

Stator2 0 2 0

Stator2 0 -2 0

Stator3 0 -4 0

Stator4 0 -2 0

Rotor1 1 0 0

Stator1 0 2 0

Stator2 0 -6 0

0
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0
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0
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0

0
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Figure 3.14: 𝑀5,2
50,44 stator current complex spectrum, in the two motor planes.

saturation harmonic (i.e., 𝑘𝜌𝑞 = 7 and 𝑘𝑠 = 𝑘𝑟 = 𝑘𝑠𝑒 = 𝑘𝑑𝑒 = 0) is assessed to be 𝑥-𝑦 and
350 Hz, respectively, in both motors. This current harmonic is labeled as #3.

The next induced harmonic to identify is the one produced by the 9th order time or
saturation harmonic, 𝑘𝜌𝑞 = 9 and 𝑘𝑠 = 𝑘𝑟 = 𝑘𝑠𝑒 = 𝑘𝑑𝑒 = 0. This harmonic maps into
the 𝛼-𝛽 plane and has a SVR speed of −450 Hz. The amplitude of this induced current
harmonic makes difficult its identification in the 𝑀5,2

30,22 current spectrum. In Fig. 3.14
and Table 3.6, this harmonic is labeled as #4.

Both motors have a number of phases such that 𝑄𝑠/𝑃 is a multiple of the phase
number, i.e., 𝑄𝑠/𝑃 = 30/2 = 15 in 𝑀5,2

30,22 and 𝑄𝑠/𝑃 = 50/2 = 25 in 𝑀5,2
50,44. As a

consequence, for the different values of 𝑘𝑠, the values of 𝜈 ′ and 𝑃ℎ/𝑃 in (3.52) evolve
in steps multiples of the phase number, which neither changes the subspace where the
induced current map nor its SVR speed. Therefore, the effects of the stator slots in the
VSD current spectrum cannot be observed. This finding can be extended to multiphase
motors with 𝑄𝑠/𝑃 = 𝑘𝑛, where 𝑘 = 1, 2, ....

The rotation speed of the flux harmonics produced by the rotor bar harmonics depends
on the number of rotor bars 𝑄𝑟, as it can be seen in (3.50). This equation shows that
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Table 3.6

𝑀5,2
50,44 Stator Current Harmonics Identification

Sync.qkρ k s kr k se kde

Stator1 0 0 0

Stator3 0 0 0

Stator7 0 0 0

Stator9 0 0 0

Stator1 0 -8 0

Stator1 0 4 0

Rotor1 0 0 -8

Stator2 0 2 0

Stator2 0 -2 0

Stator3 0 -4 0

Stator4 0 -2 0
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the rotation speed of the flux due to the fundamental MMF and the rotor bar harmonics
is 𝜔𝑘𝑟 = 𝜔𝑠 + 𝑘𝑟𝑄𝑟𝜔𝑟 = 𝜔𝑠[1 + (1 − 𝑠)𝑘𝑟𝑄𝑟/𝑃 ]. To limit the current components to be
analyzed and represented in the stator current spectrum, only the first order rotor bar
harmonics, i.e., 𝑘𝑟 = ±1, are studied in this work. The value of 𝑃ℎ/𝑃 of the produced
flux density is assessed by using (3.52) as 𝑃ℎ/𝑃 = 1 ±𝑄𝑟/𝑃 .

In the 𝑀5,2
30,22 motor, the induced current produced by the fundamental component

of the MMF (𝑘𝜌𝑞 = 1) and 𝑘𝑟 = 1 maps into the 𝑥-𝑦 plane and has a SVR speed of
50(12 − 11𝑠) Hz. This harmonic is labeled as #4 in Fig. 3.13 and in Table 3.5. In
this motor, the back EMF produced by 𝑘𝜌𝑞 = 1 and 𝑘𝑟 = −1 maps into the ℎ+ axis.
The neutral point of the motor and the converter are not connected, and hence, the
corresponding induced current harmonic cannot circulate.
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In the 𝑀5,2
50,44 motor, the induced current produced by 𝑘𝜌𝑞 = 1 and 𝑘𝑟 = 1 maps into

the 𝑥-𝑦 plane and has a SVR speed of −50(23 − 22𝑠) Hz. The one produced by 𝑘𝜌𝑞 = 1
and 𝑘𝑟 = −1 maps into the 𝛼-𝛽 plane and has a SVR speed of 50(21 − 22𝑠) Hz. These
harmonics are labeled in Fig. 3.14 and Table 3.6 #5 and #6, respectively.

The stator current spectra of 𝑀5,2
30,22 and 𝑀5,2

50,44 shown in Figs. 3.13 and 3.14 are
evaluated on the healthy motors. However, healthy motors also present a small degree
of static and dynamic eccentricity due some mechanical non-ideal conditions such as
fabrication tolerances, couplings or due to a non-perfect alignment of the motor test
bench.

The rotation speed of the flux harmonics produced by the fundamental MMF and the
static eccentricity, assessed by using (3.50), is 𝜔𝑠. The value of 𝑃ℎ/𝑃 of the produced flux
density is assessed by using (3.56). This equation shows that these flux components are
linked by the stator if there is one distribution harmonic that accomplishes 𝜈 ′ = 𝑃ℎ/𝑃 .
Therefore, the values of 𝑘𝑠𝑒 that do not have an associated 𝜈 ′ to satisfy (3.56) are not
evaluated.

In the 𝑀5,2
30,22 motor, the values 𝑘𝑠𝑒 = 2 (𝜈 ′ = 𝑃ℎ/𝑃 = 2) and 𝑘𝑠𝑒 = 4 (𝜈 ′ = 𝑃ℎ/𝑃 = 3)

are evaluated. The former maps into the 𝑥-𝑦 plane and has a SVR speed of 50 Hz; it is
labeled as #5 in Fig. 3.13 and Table 3.5. The latter maps into the 𝑥-𝑦 plane and has a
SVR speed of −50 Hz; it is labeled as #6 in Fig. 3.13 and Table 3.5.

In the 𝑀5,2
50,44 motor, the values 𝑘𝑠𝑒 = 4 (𝜈 ′ = 𝑃ℎ/𝑃 = 3) and 𝑘𝑠𝑒 = −8 (𝜈 ′ = 𝑃ℎ/𝑃 =

−3) are assessed. The former maps into the 𝑥-𝑦 plane and has a SVR speed of −50 Hz;
it is labeled as #7 in Fig. 3.14 and Table 3.6. The latter maps into the 𝑥-𝑦 plane and has
a SVR speed of 50 Hz; it is labeled as #8 in Fig. 3.14 and Table 3.6.

Equation (3.58) is used to calculate the speed of the flux harmonics produced by the
dynamic eccentricity and the fundamental MMF. The value of 𝑃ℎ/𝑃 of the produced flux
density is given by (3.57).

The dynamic eccentricities in the 𝑀5,2
30,22 motor are low and only 𝑘𝑑𝑒 = 2 (𝑃ℎ/𝑃 = 2)

are noticeable in Fig. 3.13. The produced current harmonic maps into the 𝑥-𝑦 plane and
has a SVR speed 50(2 − 𝑠) Hz. It is labeled as #7 in Fig. 3.13 and Table 3.5.

In the 𝑀5,2
50,44 motor, the current harmonics due to the fundamental MMF and the

dynamic 𝑘𝑑𝑒 = 4 (𝑃ℎ/𝑃 = 3) and 𝑘𝑑𝑒 = −8 (𝑃ℎ/𝑃 = −3) are identified. Both harmonics
map into the 𝑥-𝑦 plane. The first one has a SVR speed of 50(3 − 2𝑠) Hz and the second
one, of −50(1 − 2𝑠) Hz. They are labeled as #10 and #11 ,respectively, in Fig. 3.14 and
Table 3.6.

Figs. 3.13 and 3.14 and Tables 3.5 and 3.6 also show induced current harmonics
produced by combinations of the previously studied origins. The current harmonics in
𝑀5,2

30,22 labeled as #9 and #10 in Fig. 3.13 and Table 3.5 and the ones in𝑀5,2
50,44, labeled as

#12 and #13 in Fig. 3.14 and Table 3.6, are due to the combination of time or saturation
harmonics 𝑞𝑘𝜌 = 2 and the static eccentricity 𝑘𝑠𝑒 = ±2. The current harmonic labeled
as #11 in 𝑀5,2

30,22 and #14 in 𝑀5,2
50,44 is also produced by the combination of time or

saturation harmonics 𝑞𝑘𝜌 = 3 and the static eccentricity 𝑘𝑠𝑒 = −4. The same happens
with the current harmonic labeled as #12 in 𝑀5,2

30,22 and #15 in 𝑀5,2
50,44. In the 𝑀5,2

50,44

motor, the harmonics due to the combined effects of the rotor bar and slots and the static
eccentricity, #16 and #17, and the ones due to the combined effects of the rotor bar and
slots and the dynamic eccentricity, #18 and #19 are also identified.
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3.5.3 MCSA Eccentricity Detection in 𝑛-Phase Induction Motors

To test the proposed VSD MCSA eccentricity detection method, both motors are
analyzed with an imposed increment in the eccentricity. The 𝑀5,2

30,22 motor is tested only
with variations in the static eccentricity. The static eccentricity is increased by introducing
a misalignment between the motor shaft and the motor test bench, as in [133, 175]. The
𝑀5,2

50,44 motor is tested under the effects of mixed eccentricity with variations in the static
an dynamic eccentricities. To produce the dynamic eccentricity, a load with different
degrees of misaligned weight is introduced between the motor and the mechanical load.
The radial forces produced by the unbalanced load produce the rotor misalignment.

Three MCSA methods are going to be evaluated: the classical static eccentricity detec-
tion method, based on the rotor bar and slot harmonics, extended to 𝑛-phase motors; the
classical mixed eccentricity detection method based on the fundamental current sidebands
and the proposed VSD MCSA method.

MCSA Static Eccentricity Detection Method Based on the Rotor Bar and Slot

Harmonics

The motor𝑀5,2
30,22 is tested only for the case of static eccentricity. This motor is suitable

for the MCSA eccentricity detection method based on the monitoring of the rotor bar and
slot harmonics because the motor parameters satisfy (3.53). It has been seen in section
§3.5.2 that, in a healthy 𝑀5,2

30,22 motor, the back EMF harmonic due to the PSH with
𝑘𝑟 = −1 maps into the ℎ+ axis. Since the neutrals of the motor and the inverter are
isolated, the induced current harmonics due to this back EMF cannot circulate. When
the static eccentricity affects this motor, for the fundamental MMF, 𝑘𝑟 = −1 and 𝑘𝑠𝑒 ̸= 0,
the expression (3.52) becomes 𝑃ℎ/𝑃 = −10 + 𝑘𝑠𝑒/𝑃 . For 𝑘𝑠𝑒 = ±2, the back EMFs map
into the 𝛼-𝛽 plane and, for 𝑘𝑠𝑒 = ±4, the back EMFs map into the 𝑥-𝑦 plane; and hence,
the induced current harmonics appear in the stator current spectrum with an absolute
value of the SVR speed equal to 50(10 − 11𝑠) Hz.

The evolution of the amplitude of the induced current harmonics due the PSH (𝑘𝑟 =
−1) of 𝑀5,2

30,22 when the static eccentricity is increased is shown in Fig. 3.15. The variable
𝛼𝑢 indicates the misalignment angle between the motor shaft and the motor test bench.
In this experiment, four degrees of misalignment are tested: motor aligned (black line),
𝛼𝑢 = 0.02 rad (green line), 𝛼𝑢 = 0.04 rad (blue line) and 𝛼𝑢 = 0.06 rad (red line). The
imposed static eccentricity in this experiment is low in comparison with a real fault state.
Hence, the amplitude of the symptom (PSH with 𝑘𝑟 = −1) is low. However, an increase
in the amplitude of the symptom with the increment of the static eccentricity can be
observed in Fig. 3.15.

MCSA Static Eccentricity Detection Method Based on VSD

The eccentricity detection method, proposed in section §3.4.4, based on the analysis
of the stator current spectrum by means of the VSD is divided in three steps.

In the first step, the order and amplitudes of the stator winding harmonics are obtained
by applying the DFT to the stator winding function. The harmonic content of the 𝑀5,2

30,22

can be seen in Fig. 3.11b. Then, the subspaces and SVR speeds of their linked induced
currents are obtained by using (3.46). This classification is shown in Table 3.3. Finally,
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Figure 3.15: Variation of the phase A current spectrum of the 𝑀5,2
30,22 motor when the
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the stator distribution harmonic chosen for the static eccentricity monitoring is 𝜈 ′ = 3.
This stator winding distribution harmonic is chosen because it is the one with the highest
amplitude that maps into a different subspace than the fundamental current. Thus, the
static eccentricity symptom maps into the 𝑥-𝑦 plane and its SVR speed is −50 Hz. This
static eccentricity symptom is labeled as #6 and is highlighted in Table 3.5.

In the second step, the VSD spectrum of the healthy motor is obtained by using the
CFFT with a resolution of 1 Hz. It is exposed in Fig. 3.13. This figure shows that the pro-
posed static eccentricity symptom already has a non-depreciable amplitude in the healthy
motor. This is due to the fact that even healthy motors present some degree of eccen-
tricity and because of some other non-ideal characteristics of the system. Furthermore,
the 𝑥-𝑦 plane is a low impedance plane, and thus, low amplitude back EMFs can produce
high current harmonics.

In the third step, the amplitude of the chosen symptom is monitored to detect when
the static eccentricity increases. The evolution of the chosen symptom amplitude when
the static eccentricity is increased is shown in Fig. 3.16. In this experiment, the same
four degrees of static misalignment than in the previous one are tested: motor aligned
(black line), 𝛼𝑢 = 0.02 rad (green line), 𝛼𝑢 = 0.04 rad (blue line) and 𝛼𝑢 = 0.06 rad (red
line). The results of the experiment shown in Fig. 3.16 corroborate the amplitude of the
symptom (#6) rises when the static eccentricity increases. Additionally, this figure shows
that the amplitudes of the harmonics #5, #8, #9 and #10, which are related with the
static eccentricity too, are also increased.
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Figure 3.16: VSD analysis of the current spectrum of 𝑀5,2
30,22 when the static rotor ec-

centricity is increased: 𝛼𝑢 = 0 rad and 𝑠 = 0.044 (black), 𝛼𝑢 = 0.02 rad and 𝑠 = 0.053
(green), 𝛼𝑢 = 0.04 rad and 𝑠 = 0.052 (blue) and 𝛼𝑢 = 0.06 rad and 𝑠 = 0.071 (red).
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Figure 3.17: Static eccentricity detection algorithm based on the VSD MCSA.

The change in the amplitude of the symptom due to the static eccentricity is higher
in the MCSA method based on the VSD than in the one based on the PSH. In addition,
the frequency of the current harmonics to monitor is lower, thus, the required bandwidth
of the current sensors in this method is smaller. A simple algorithm for monitoring the
amplitude of the proposed static eccentricity symptom (#6) is shown in Fig. 3.17. In
the first block, the current per phase is decomposed into subspaces. Then, the current
component at −𝜔𝑠 in the 𝑥-𝑦 plane is obtained by using a rotating reference frame and a
low pass filter (with a cut frequency of 0.1 Hz).
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Figure 3.18: Fundamental current sideband variation with an increase in the dynamic
eccentricity: 𝐹𝑢 = 0 g and 𝑠 = 0.11 (black), 𝐹𝑢 = 23 g and 𝑠 = 0.11 (green), 𝐹𝑢 = 43 g
and 𝑠 = 0.095 (blue) and 𝐹𝑢 = 63 g and 𝑠 = 0.11 (red).

Mixed Eccentricity Detection Method Based on the fundamental current side-

bands

The eccentricity detection method based on the fundamental current sidebands at the
frequencies show in (1.47) is tested with mixed eccentricity in the 𝑀5,2

50,44 motor. Two
experiments are carried out. In the first one, the evolution of the sidebands amplitude
is tested when the dynamic eccentricity varies, and in the second one, it is tested with
variations in the static eccentricity.

In the first experiment, the 𝑀5,2
50,44 motor is tested with a fixed level of static eccen-

tricity (the healthy motor static eccentricity level) and four different levels of dynamic
eccentricity. These four levels are created by using a load with a variable misaligned
weight. The obtained phase A current spectrum is shown in Fig. 3.18. The first test
(black line) is done without any misaligned weight (the healthy 𝑀5,2

50,44 motor dynamic
eccentricity level), in the second test (green line) a misaligned weight of 𝐹𝑢 = 23 g is
added to the load, in the third test (blue line) 𝐹𝑢 = 43 g and in the fourth test 𝐹𝑢 = 63 g
(red line). Fig. 3.18 shows that the monitored sidebands amplitude rises when dynamic
eccentricity is increased.

In the second experiment, the 𝑀5,2
50,44 motor is tested with a fixed level of dynamic

eccentricity (the healthy motor dynamic eccentricity level) and four different levels of
static eccentricity: the first test is done with 𝛼𝑢 = 0 rad (black line); the second one, with
𝛼𝑢 = 0.01 rad (green line); the third one, with 𝛼𝑢 = 0.02 rad (blue) and in the last one,
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Figure 3.19: Fundamental current sideband variation with an increase in the static ec-
centricity: 𝛼𝑢 = 0 rad and 𝑠 = 0.075 (black), 𝛼𝑢 = 0.01 rad and 𝑠 = 0.105 (green),
𝛼𝑢 = 0.02 rad and 𝑠 = 0.125 (blue) and 𝛼𝑢 = 0.03 rad and 𝑠 = 0.160 (red).

𝛼𝑢 = 0.03 rad (red). The obtained phase A current spectra are shown in Fig. 3.19.
Fig. 3.19 shows that the monitored fundamental current sidebands do not change

their amplitude due to the increase in the static eccentricity level. This effect is due to
the fact that, in the five-phase motor, these current sidebands are produced by dynamic
eccentricity and not by static eccentricity. This result differs from the three-phase case,
in which some of the fundamental current sidebands are due to the combination of the
static and dynamic eccentricity (as it is shown in Table 3.2) and, thus their amplitude
depends on the two rotor misalignments.

MCSA Mixed Eccentricity Detection Method Based on VSD

The motor 𝑀5,2
50,44 is tested with a combination of static and dynamic eccentricities.

In the first step, the stator distribution harmonics are shown in Fig. 3.12b and the
subspaces and SVR speeds of their linked induced currents are shown in Table 3.4. The
stator distribution harmonic chosen for the static eccentricity monitoring is also 𝜈 ′ = 3, as
with the previous motor. Thus, the static eccentricity symptom is an increased amplitude
of the space vector that maps into the 𝑥-𝑦 plane and has a SVR speed of −50 Hz. This
static eccentricity symptom is labeled as #7 and it is highlighted in Table 3.6. The
dynamic eccentricity symptoms also map into the 𝑥-𝑦 plane and their SVR speeds are
−50(3 − 2𝑠) Hz (#11) and −50(1 − 2𝑠) Hz (#10). These symptoms are highlighted in
Table 3.6.
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Figure 3.20: Analysis by means of the VSD of the 𝑀5,2
50,44 stator current spectrum with an

increase in the dynamic rotor eccentricity: 𝐹𝑢 = 0 g and 𝑠 = 0.11 (black), 𝐹𝑢 = 23 g and
𝑠 = 0.11 (green), 𝐹𝑢 = 43 g and 𝑠 = 0.095 (blue) and 𝐹𝑢 = 63 g and 𝑠 = 0.11 (red).

In the second step, the VSD spectrum of the healthy motor is shown in Fig. 3.14. It
can be seen in the figure that the amplitudes of #7 and #11 are different from zero even
in the healthy motor.

In the third step of the method, the amplitudes of the selected eccentricity symptoms
are monitored. As in the previous section, where the eccentricity detection method based
on the current sidebands is tested, two experiments are going to be done, in the first one
the 𝑀5,2

50,44 motor is going to be tested with four degrees of dynamic eccentricity and in
the second one, with four degrees of static eccentricity.

Fig. 3.20 shows the evolution of the chosen dynamic (#10 and #11) and static (#7)
eccentricity symptoms with an increase in the dynamic eccentricity. The dynamic eccen-
tricity levels are the same as the ones used to test the current sideband method: 𝐹𝑢 = 43 g
(black line), 𝐹𝑢 = 23 g (green line), 𝐹𝑢 = 43 g (blue line) and 𝐹𝑢 = 63 g (red line). This
picture shows that, when the dynamic eccentricity is increased while keeping the other
motor parameters constant, the amplitudes of the #10 and #11 current harmonics become
larger and the amplitude of #7 does not vary.

Fig. 3.21 shows the evolution of the chosen dynamic and static eccentricity symptoms
with an increase in the static eccentricity. The dynamic eccentricity levels are also the
same ones as in the current sideband experiment: 𝛼𝑢 = 0 rad (black), 𝛼𝑢 = 0.01 rad
(green), 𝛼𝑢 = 0.02 rad (blue) and 𝛼𝑢 = 0.03 rad (red). This experiment reflects that
the increase in the static eccentricity rises the amplitude of #7, while the amplitudes of
#10 and #11 remain unchanged. Therefore, the proposed VSD MCSA method allows to
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Figure 3.21: Analysis by means of the VSD of the 𝑀5,2
50,44 stator current spectrum with an

increase in the static eccentricity: 𝛼𝑢 = 0 rad and 𝑠 = 0.075 (black), 𝛼𝑢 = 0.01 rad and
𝑠 = 0.105 (green), 𝛼𝑢 = 0.02 rad and 𝑠 = 0.125 (blue) and 𝛼𝑢 = 0.03 rad and 𝑠 = 0.160
(red).

distinguish between a static or a dynamic eccentricity increment.
The algorithm shown in Fig. 3.17 can be used to monitor the amplitude of the static ec-

centricity symptom #7. A similar algorithm for monitoring the amplitude of the dynamic
eccentricity symptoms #10 and #10 is shown in Fig. 3.22.
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Figure 3.22: Dynamic eccentricity detection algorithm based on the VSD MCSA.
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3.6 Conclusion

In this chapter, the model used to study the time harmonic mapping by means of the
VSD is extended to cover the current harmonics produced by non-ideal characteristics of
real squirrel cage motors, such as the ones due to the winding distribution, rotor bars,
stator and rotors slots, rotor eccentricities and magnetic saturation.

This model is used to analyze the VSD of the current signature of healthy multiphase
squirrel cage motors. This analysis provides more information of each current harmonic
(i.e., the subspace where it maps and the SVR speed) than the classic approach, based
only on the amplitudes and frequencies in the stator current spectrum.

The most common method to detect static eccentricity is the classic approach based on
monitoring the amplitudes of the rotor slot and bar harmonics. The information obtained
from the VSD analysis of the stator current spectrum of multiphase motors is used to
assess the motor characteristics to determine when the classic static eccentricity method
based on the monitoring of the rotor slot and bar harmonics is valid for a specific 𝑛-phase
motor.

A MCSA method to detect pure-static, pure-dynamic and mixed eccentricities in mul-
tiphase induction motors is proposed as an example of application of the VSD stator
current analysis. The symptoms that the proposed method uses to detect the static ec-
centricity have higher amplitudes and lower frequencies than the ones used by the classic
MCSA method, the rotor bar and slot harmonics,. The developed method can be used
in the cases the classic method is not valid to detect pure-static eccentricity due to the
𝑛-phase motor characteristics. In addition, in cases of mixed eccentricity, by using the
proposed VSD MCSA method it is possible to distinguish between increases in the static
or in the dynamic eccentricity.

Finally, experimental results were obtained with two five-phase motors with different
stator and rotor slot numbers and winding distributions to evaluate the VSD healthy
motor current signature and the proposed VSD MCSA eccentricity detection method.



Chapter 4

Conclusion and Future Research

4.1 Conclusion

This thesis presents the study and characterization of the stator current and voltage
components produced by time and spatial harmonics in a 𝑛-phase induction motor with
a symmetrical arrangement of phases by means of the VSD. Its main contributions and
conclusions are summarized below.

∙ First, an analysis by means of the VSD of the stator voltage and current harmonics in
multiphase induction motors is developed. This study takes into account the effects
of the time harmonic order and the phase sequence on the harmonic mapping.

∙ From this analysis, a simple time harmonic mapping method is obtained. The
proposed method is valid to predict the subspace where each time harmonic maps
and its SVR speed (frequency and direction) in symmetrical multiphase induction
motors of any phase number. It can be applied to single motor and series-connected
multimotor drives.

∙ This method can be used to predict in single and multimotor drives whether the
time harmonic maps into a low impedance plane, producing extra losses, or into
a rotor coupled plane, producing torque ripple. In series-connected systems, the
crossed interactions between motors are also identified.

∙ Then, the model used to analyze the time harmonic VSD is extended to cover
the current harmonics produced for some non-ideal characteristics of a squirrel cage
motor, such as non-perfect sinusoidal winding distributions, rotor bars, non-uniform
airgap and magnetic saturation.

∙ Due to the fact that the study of the harmonics by means of the VSD provides more
information, i.e., the subspace where each harmonic maps and its SVR speed, than
the classic current per phase spectrum, it is applied to analyze the 𝑛-phase healthy
motor current signature.

∙ With the proposed analysis of the current spectrum by means of VSD it can be
predicted the subspace where the current component due to one specific cause,
among the studied ones, maps. By knowing the subspace where it maps, it can also
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be predicted if the current is going to have high amplitude, if it is a low impedance
plane, or if it is not going to circulate, in case it maps into a homopolar component
and there is no neutral connection. This information is used to extend the classic
MCSA static eccentricity detection method based on the rotor slot and bar current
harmonics to the case of 𝑛-phase motors.

∙ The analysis of the MCSA by means of the VSD also helps to distinguish between
harmonics with the same frequency in the stator current spectrum. This fact is
used to propose a new MCSA method to detect pure-static, pure-dynamic and
mixed eccentricities based on the VSD of the current signature of the motor.

∙ The static eccentricity symptoms monitored in this method have higher amplitudes
and lower frequencies than the ones in the classic MCSA method based on the rotor
bar and slot harmonics. Furthermore, the proposed VSD MCSA method can be
used in the cases the classic method is not valid to detect pure-static eccentricity in
multiphase motors.

∙ In the case of mixed eccentricity detection, the proposed method allows to dis-
tinguish between the symptoms due to the static and the dynamic eccentricities.
Therefore, this method can be used to differentiate between a rise in the static or
dynamic eccentricity.

∙ Research work included in the dissertation has given rise to one journal paper [5]
and two conference papers [10, 21].

4.2 Future Research

There are several interesting topics suggested for further research in VSD current
and voltage harmonics analysis in multiphase motors. These topics are described in the
following.

∙ The proposed current and voltage harmonics mapping method should be extended
to multiphase motors with an asymmetrical arrangement of phases.

∙ The study about current and voltage components produced by time and spatial
harmonics in multiphase motors should be extended to other types of machines,
such as synchronous, permanent magnet or doubly-fed motors.

∙ The proposed VSD MCSA eccentricity detection method should be completed with
a broader study, including more accurate measures of the eccentricity degree and
validated by using a larger variety of multiphase motors.

∙ The VSD MCSA method can be extended for the detection of other common motor
faults, such as open- or short-circuit stator phase or bearing faults.

∙ A similar monitoring method, based on the VSD, should be developed for motor
voltage or power signature analysis and a VSD method that can detect faults in
current controlled multiphase drivers should be studied.
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